• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 57
  • 13
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 91
  • 17
  • 16
  • 16
  • 15
  • 15
  • 14
  • 11
  • 10
  • 10
  • 10
  • 9
  • 9
  • 9
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Réponse des cellules souches et progénitrices de l'épiderme humain aux UVA : implication des dommages à l'ADN et des systèmes de réparation et nouvelles stratégies de génoprotection / Response of keratinocyte stem cells and progenitors to UVA radiation : implication of DNA damage and repair systems and new strategies of photoprotection

Metral, Élodie 24 April 2017 (has links)
Skin is daily exposed to sun radiation. Among them, UVA reach the basal layer of epidermis composed of keratinocyte stem cells (KSC) and progenitors commonly called transitory amplifying cells (TA). KSC and TA, responsible of the epidermal renewal, are sensitive to genotoxic agents and more particularly to UV. Indeed, KSC, usually quiescent but composing the stem cell pool all lifelong, as well as TA, are specific targets for photocarcinogenesis and photoageing. In this context, the aim of the project was to develop a method able to isolate KSC and TA for characterizing their response to UVA, and in a more industrial objective, to value a photoprotective and/or genoprotective ingredient by investigating their mechanisms of action. A parallel aim was to define culture conditions suitable for maintaining the stemness of KSC in culture, which is quickly lost from their enter into a proliferative state. Thus we showed that adjunction of adipose derived stem cells (ASC) to fibroblasts in dermis of a skin equivalent model (SE) in order to reproduce the physiological environment of KSC, significantly increases the thickness of the epidermis and preserves the keratinocytes from their senescence. ASC act partially via the increase of fibroblasts proliferation in dermis and potentially via a synergic effect of factors secreted by the combination of ASC and fibroblasts. To compare the behavior of KSC to the one of TA, we firstly optimized the rapid adhesion method ; then compared it to the cell sorting by flow cytometry following the alpha6high/CD71low phenotype, which appeared more efficient. Thus, KSC (alpha6high/CD71low) and TA (alpha6high/CD71high) were then irradiated to UVA. KSC showed a photoresistance compared to TA with a better cell viability and a clonogenic potential superior as well as a better ability to reconstruct a pluristratified epidermis in vitro. We also investigated mechanisms of resistance. Our results demonstrate that the induction of the three types of DNA damage immediately induced by UVA is similar in both populations, but that the repair of single strand breaks (SSB) and of thymin dimers (CPDs) is faster for KSC. Finally, PE1, ingredient preselected by Gattefossé was characterized for its photoprotective and genoprotective effect. We showed that PE1 is able to i) preserve capacity of keratinocytes to form holoclones after UVA radiation, ii) decrease DNA damage, notably 8oxoGuanin and CPDs, and iii) improve several repair genes expression and activities. To conclude, this thesis project showed for the first time that KSC are more resistant to UVA radiation than their direct progeny, TA notably via improved DNA repair systems. Moreover, it allowed to identify a plant extract (PE1) able to protect genome of proliferative keratinocytes to UVA radiation / La peau est quotidiennement exposée aux rayons UV du soleil dont les UVA qui atteignent la couche basale de l'épiderme, composée de cellules souches kératinocytaires (KSC) et de cellules progénitrices appelées communément les cellules d'amplification transitoire (TA). Les KSC et TA, responsables du renouvellement de l'épiderme, sont vulnérables à l'action des agents génotoxiques et plus particulièrement aux rayonnements UV. En effet, Les KSC normalement quiescentes mais constituant la réserve de cellules souches tout au long de la vie de l'organisme, comme les TA, sont des cibles préférentielles pour la photocarcingénèse et le photovieillissement cutanés. Dans ce contexte, le but du projet était de développer une méthode capable d'isoler les KSC et les TA afin de caractériser leur réponse biologique vis-à-vis des UVA et dans un objectif plus industriel, de valoriser un actif photoprotecteur et/ou génoprotecteur par l'investigation de ses mécanismes d'action. Un objectif parallèle était de définir des conditions de culture optimales pour garder le phénotype souche des KSC en culture, qui est rapidement perdu dès leur entrée en prolifération. Ainsi, nous avons montré que l'ajout des cellules souches adipeuses (ASC) aux fibroblastes d'une peau reconstruite (PR), pour reproduire l'environnement des KSC, augmente significativement l'épaisseur de l'épiderme et surtout préserve les kératinocytes de leur entrée en sénescence, en partie par l'augmentation de la prolifération des fibroblastes au niveau du derme et potentiellement par un effet synergique des facteurs solubles sécrétés par la combinaison des ASC/fibroblastes. Afin de comparer le comportement des KSC à celui des TA nous avons donc tout d'abord optimisé la méthode d'adhésion rapide, puis l'avons comparée au tri par cytométrie de flux selon le phénotype alpha6high/CD71low, qui s'est avérée plus efficace. Les KSC (alpha6high/CD71low) et les TA (alpha6high/CD71high) ont ensuite été irradiés aux UVA. Les KSC ont montré une photorésistante plus importante que les TA avec une viabilité cellulaire et un potentiel clonogénique supérieurs ainsi qu'une meilleure capacité à reconstruire un épiderme pluristratifié in vitro. Nous avons aussi recherché les mécanismes de résistance. Nos résultats démontrent que l'induction des 3 types de dommages à l'ADN immédiatement après irradiation est identique pour les deux populations mais que la réparation des cassures simple brin (SSB) et des dimères de pyrimidine (CPDs) est plus rapide pour les KSC. Enfin, PE1, actif préselectionné par Gattefossé, a été caractérisé pour son effet photoprotecteur et génoprotecteur. Nous avons montré que PE1 est capable de (i) préserver la capacité des kératinocytes à former des holoclones après irradiation, (ii) diminuer les lésions à l'ADN, notamment la 8oxoGuanine et les CPDs (iii) améliorer l'expression de plusieurs gènes et les activités de réparation de l'ADN. Pour conclure, ce travail de thèse a montré pour la première fois que les KSC (alpha6high/CD71low), sont plus résistantes vis-à-vis des UVA que les TA (alpha6high/CD71high) notamment grâce à des systèmes de réparation de l'ADN plus actifs dans les KSC, et a permis d'identifier un extrait végétal (PE1) capable de protéger le génome des kératinocytes proliférants contre les UVA
62

MicroARNs et vieillissement épidermique : identification et exploration fonctionnelle de nouvelles cibles anti-âge / MicroRNAs and epidermal aging : identification and functional exploration of new anti-aging targets

Muther, Charlotte 15 December 2017 (has links)
Les microARNs sont de petits ARN non codants régulant négativement l'expression génique au niveau post-transcriptionnel. Ils interviennent dans de nombreux processus biologiques et leur rôle dans la régulation de l'homéostasie cutanée est clairement démontrée. Cependant, leur fonction durant le vieillissement épidermique n'a jamais été étudiée. Nous avons donc réalisé une analyse exhaustive du miRnome épidermique durant son vieillissement afin d'identifier les microARNs différentiellement exprimés avec l'âge dans ce tissu. Plusieurs microARNs significativement modulés dans des kératinocytes âgés, nous ont permis d'établir une signature du vieillissement épidermique. Parmi eux, les deux brins du microARN miR-30a sont induits dans les épidermes âgés. La construction d'un lentivirus permettant la surexpression stable et inductible de ce microARN a facilité son étude fonctionnelle dans un modèle organotypique d'épiderme reconstruit. Nous avons observé que la surexpression de ce microARN dans un modèle de culture tridimensionnelle induit un phénotype épidermique présentant des similitudes avec celui observé durant son vieillissement chronologique et caractérisé par une forte altération de la différenciation des kératinocytes, par une perturbation de sa fonction barrière et par une augmentation de l'abondance des cellules apoptotiques. Ce projet de thèse a permis l'identification de 3 cibles directes de miR-30a dans les kératinocytes. Il s'agit de LOX, codant pour la lysyl oxydase qui intervient dans la balance prolifération/différenciation des kératinocytes, d'AVEN, un inhibiteur de caspase et d'IDH1, codant pour l'isocitrate déshydrogénase, enzyme du métabolisme énergétique. Ainsi, ce projet de thèse a révélé un nouveau microARN acteur du vieillissement épidermique et a permis de de mettre à jour de nouveaux mécanismes moléculaires expliquant certaines altérations phénotypiques observées dans l'épiderme avec l'âge / MicroRNAs are small non-coding RNA that negatively regulate gene expression at the post-transcriptional level. There are involved in many biological processes and play a key role in the regulation of skin homeostasis. However, their function during epidermal aging has never been studied. We performed an exhaustive analysis of the epidermal miRnome during its aging in order to identify microRNAs differentially expressed with age in this tissue. Several microRNAs significantly modulated in elderly keratinocytes, allowed us to establish a signature of epidermal aging. Among them, the two strands of the microRNA miR-30a are induced in aged epidermis. The construction of a lentivirus allowing inducible and stable overexpression of this microRNA facilitated its functional study in an organotypic model of reconstructed epidermis. We observed that the overexpression of this microRNA in a three-dimensional culture model induces an epidermal phenotype similar of those observed during its chronological aging characterized by a strong alteration of keratinocyte differentiation, by a disturbance of its barrier function and by an increase in the abundance of apoptotic cells. This thesis project allowed the identification of three miR-30a targets in keratinocytes : LOX encoding lysyl oxidase, which plays a role in proliferation/differentiation balance of keratinocytes, AVEN encoding a caspase inhibitor and IDH1 encoding isocitrate deshydrogenase, a key enzyme of cellular metabolism.Our work revealed a new miRNA actor and deciphered new molecular mechanisms to explain some alterations observed in epidermis during aging, especially those concerning keratinocytes differentiation and apoptotic death
63

Regulation of fibroblast activity by keratinocytes, TGF-β and IL-1α : studies in two- and three dimensional in vitro models

Koskela von Sydow, Anita January 2016 (has links)
Dysregulated wound healing is commonly associated with excessive fibrosis. Connective tissue growth factor (CTGF/CCN2) is characteristically overexpressed in fibrotic diseases and stimulated by transforming growth factor-β (TGF-β) in dermal fibroblasts. Reepithelialisation and epidermal wound coverage counteract excessive scar formation. We have previously shown that interleukin-1α (IL-1α) derived from keratinocytes conteracts TGF-β-stimulated CTGF-expression. The aim of this thesis was to further explore the effects of keratinocytes and IL-1α on gene and protein expression, as well as pathways, in TGF-β stimulated fibroblasts. Fibroblasts were studied in vitro by conventional two dimensional cell culture models and in a three dimensional keratinocyte-fibroblast organotypic skin culture model. The results showed that IL-1 suppresses basal and TGF-β-induced CTGF mRNA and protein, involving a possible TAK1 mechanism. Keratinocytes regulate the expression of fibroblast genes important for the turnover of the extracellular matrix. Most of the genes analysed (11/13) were regulated by TGF-β and counter regulated by keratinocytes. The overall results support a view that keratinocytes regulate fibroblasts to act catabolically (anti-fibrotic) on the extracellular matrix. Transcriptional microarray and gene set enrichment analysis showed that antagonizing effects of IL-1α on TGF-β were much more prominent than the synergistic effects. The most confident of these pathways was the interferon signaling, which were inhibited by TGF-β and activated by IL-1α. A proteomics study confirmed that IL-1α preferentially conteracts TGF-β effects. Six new fibroblast proteins involved in synthesis/ regulation were identified, being regulated by TGF-β and antagonized by IL-1α. Pathway analysis confirmed counter-regulation of interferon signaling by the two cytokines. These findings have implications for understanding the role of fibroblasts for inflammatory responses and development of fibrosis in the skin.
64

KGF Induces Lipogenic Genes Through a PI3K and JNK/SREBP-1 Pathway in H292 Cells

Chang, Yongsheng, Wang, Jieru, Lu, Xiaojun, Thewke, Douglas P., Mason, Robert J. 01 December 2005 (has links)
Lipid synthesis is required for cell growth and is subject to pharmacologic regulation. Keratinocyte growth factor (KGF) stimulates proliferation and lipogenesis in H292 cells, a pulmonary epithelial cancer cell line, but the signaling pathways are not known. KGF stimulated the expression of the transcription factors sterol-regulatory element binding protein-1 (SREBP-1), CCAAT/enhancer binding protein α (C/EBPα), and C/EBPδ and two key enzymes involved in lipogenesis, FAS and stearoyl coenzyme A desaturase-1 (SCD-1). We found that KGF induced rapid activation of Akt, p70 S6K, JNK, and extracellular signal-regulated (ERK). Induction of SREBP-1, SCD-1, and FAS by KGF was inhibited by the JNK inhibitor SP600125 and the phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 but not by the ERK inhibitor PD98059. Using FAS and SCD-1-luciferase promoter constructs, we observed that KGF stimulated the transcription of these promoters and that exogenous cholesterol inhibited the induction. Mutation of the SREBP-1 binding site in the SCD-1 promoter abolished the effect of KGF on SCD-1 transcription. In addition, overexpression of active SREBP-1 directly stimulated SCD-1 and FAS. Conversely, adenovirus-mediated overexpression of a dominant negative form of SREBP-1 inhibited the KGF effect on FAS and SCD-1 expression. In summary, we conclude that KGF requires both PI3K and JNK signaling pathways to induce SREBP-1, which in turn induces SCD-1 and FAS expression in H292 cells.
65

The effects of TGF-β on the behaviour of a keratinocyte cell line: implications in wound repair

Berends, Rebecca F. January 2011 (has links)
TGF-β isoforms are important signalling molecules in wound repair in the skin. Transforming growth factor β3 (TGF-β3) has been implicated in scarless healing. In both animal and human models the application of exogenous TGF-β3 causes a reduction in the inflammatory response and improves the architecture of the neodermis. Research into the influence of TGF-β on scarring has tended to focus on fibroblasts. However, keratinocytes play a major role in scarring both indirectly, as a result of their influence over the behaviour of fibroblasts and also by directly influencing wound contraction. Thus, experiments were carried out to investigate the influence of TGF-β3 on the behaviours of a keratinocyte cell line (HaCaT). Incubation with TGF-β3 increased cell spreading and appeared to reduce cell-surface contacts indicated by both SPR imaging and a detachment assay. TGF-β3 also caused a decreased cell alignment response to microcontact printed protein patterns, in part due to the deposition of laminin which is associated with the TGF-β induced cell migration. There is evidence that TGF-β isoforms differentially influence the outcome of wound healing. Similar to the results produce following addition of exogenous TGF-β3, the neutralisation of TGF-β1 and 2 has been shown to reduce scar formation in the adult wounds. During reepithelialisation keratinocytes experience a dynamic environment. Both extracellular matrix proteins and growth factors influence the progression of wound repair which includes both cell migration and proliferation. Few studies have examined collective cell behaviour in response to TGF-β isoforms and ECM coated substrates. Thus both wound closure and cell proliferation assays were conducted for different ECM proteins fibronectin, laminin and collagen type I and for TGF-β1, 2 and 3. Rates of wound closure were significantly reduced on laminin coated substrates while cell proliferation rates were increased. TGF-β2 and 3 induced significant increases in wound closure rates. This appeared to correspond with an increase in the number of cells independently migrating out from the wound margins. Only TGF-β3 caused a significant decrease in cell proliferation over a 4 day period. Laminin332 deposition is central to the reepithelialisation process and is known to be induced in response to TGF-β. Thus experiments were carried out to investigate HaCaT cell laminin332 deposition in response to TGF-β1, 2 and 3. Both an immunofluorescence staining technique and an ELISA based semi-quantification method was used. Following 4 day incubation all TGF-β isoforms significantly increased laminin332 deposition; however TGF-β2 and 3 caused the most significant increases. Integrin receptors enable cell-matrix interactions during wound repair. TGF-β is known to influence the expression of integrin subunits. Thus, experiments were carried out to compare the influence of each TGF-β isoform on the expression of subunits α3, α2, α5, β1 and β4. All TGF-β isoforms significantly increased all subunit expression. TGF-β3 caused the most significant increase in β4 and both TGF-β2 and 3 caused the most significant increase in α2. While there were differences in cell responses to each isoforms, TGF-β3 did not stand out from the other two isoforms. Interestingly, TGF-β2 shared more similarities with TGF-β3 than it did with TGF-β1, in its role in enhancing wound closure and LN332 deposition. These comparative studies have shown that differences exist in the way TGF-β isoforms influence HaCaT cell behaviour, namely migration, laminin deposition and integrin expression. / EPSRC and DTA grant
66

3D Cell Culture Model Synthesized By Polycaprolactone Nanofiber Electrospinning

Zhao, Huizhi 01 October 2018 (has links)
No description available.
67

Regulation of the Transcription and Subcellular Localization of the Tumor Suppressor PTEN by ΔNp63α

Leonard, Mary Kathryn January 2012 (has links)
No description available.
68

Investigations into the role of proinflammatory cytokines in the pathogenesis of gastric epithelial proliferation in chronic helicobacter pylori gastritis

Peterson, Richard A., II January 2003 (has links)
No description available.
69

Biophysical characteristics of cells cultured on cholesteryl ester liquid crystals

Soon, Chin Fhong, Omar, W.I.W., Berends, Rebecca F., Nayan, N., Basri, H., Tee, K.S., Youseffi, Mansour, Blagden, Nicholas, Denyer, Morgan C.T. 2013 October 1914 (has links)
No / This study aimed at examining the biophysical characteristics of human derived keratinocytes (HaCaT) cultured on cholesteryl ester liquid crystals (CELC). CELC was previously shown to improve sensitivity in sensing cell contractions. Characteristics of the cell integrin expressions and presence of extracellular matrix (ECM) proteins on the liquid crystals were interrogated using various immunocytochemical techniques. The investigation was followed by characterization of the chemical properties of the liquid crystals (LC) after immersion in cell culture media using Fourier transform infrared spectroscopy (FTIR). The surface morphology of cells adhered to the LC was studied using atomic force microscopy (AFM). Consistent with the expressions of the integrins α2, α3 and β1, extracellular matrix proteins (laminin, collagen type IV and fibronectin) were found secreted by the HaCaT onto CELC and these proteins were also secreted by cells cultured on the glass substrates. FTIR analysis of the LC revealed the existence of spectrum assigned to cholesterol and ester moieties that are essential compounds for the metabolizing activities of keratinocytes. The immunostainings indicated that cell adhesion on the LC is mediated by self-secreted ECM proteins. As revealed by the AFM imaging, the constraint in cell membrane spread on the LC leads to the increase in cell surface roughness and thickness of cell membrane. The biophysical expressions of cells on biocompatible CELC suggested that CELC could be a new class of biological relevant material.
70

Perturbation in gene expression in arsenic-treated human epidermal cells

Udensi, Kalu Udensi 25 June 2013 (has links)
Arsenic is a universal environmental toxicant associated mostly with skin related diseases in people exposed to low doses over a long term. Low dose arsenic trioxide (ATO) with long exposure will lead to chronic exposure. Experiments were performed to provide new knowledge on the incompletely understood mechanisms of action of chronic low dose inorganic arsenic in keratinocytes. Cytotoxicity patterns of ATO on long-term cultures of HaCaT cells on collagen IV was studied over a time course of 14 days. DNA damage was also assessed. The percentages of viable cells after exposure were measured on Day 2, Day 5, Day 8, and Day 14. Statistical and visual analytics approaches were used for data analysis. In the result, a biphasic toxicity response was observed at a 5 μg/ml dose with cell viability peaking on Day 8 in both chronic and acute exposures. Furthermore, a low dose of 1 μg/ml ATO enhanced HaCaT keratinocyte proliferation but also caused DNA damage. Global gene expression study using microarray technique demonstrated differential expressions of genes in HaCaT cell exposed to 0.5 μg/ml dose of ATO up to 22 passages. Four of the up-regulated and 1 down-regulated genes were selected and confirmed with qRT-PCR technique. These include; Aldo-Keto Reductase family 1, member C3 (AKR1C3), Insulin Growth Factor-Like family member 1 (IGFL1), Interleukin 1 Receptor, type 2 (IL1R2) and Tumour Necrosis Factor [ligand] Super-Family, member 18 (TNFSF18), and down-regulated Regulator of G-protein Signalling 2 (RGS2). The decline in growth inhibiting gene (RGS2) and increase in AKR1C3 may be the contributory path to chronic inflammation leading to metaplasia. This pathway is proposed to be a mechanism leading to carcinogenesis in skin keratinocytes. The observed over expression of IGFL1 may be a means of triggering carcinogenesis in HaCaT keratinocytes. In conclusion, it was established that at very low doses, arsenic is genotoxic and induces aberrations in gene expression though it may appear to enhance cell proliferation. The expression of two genes encoding membrane proteins IL1R2 and TNFSF18 may serve as possible biomarkers of skin keratinocytes intoxication due to arsenic exposure. This research provides insights into previously unknown gene markers that may explain the mechanisms of arsenic-induced dermal disorders including skin cancer / Environmental Sciences / D. Phil. (Environmental science)

Page generated in 0.0272 seconds