1 |
C*-algèbres associées à certains systèmes dynamiques et leurs états KMS / C*-algebras associated with certain dynamical systems and their KMS states / C*-álgebras associadas a certas dinâmicas e seus estados KMSDe Castro, Gilles 18 December 2009 (has links)
D'abord, on étudie trois façons d'associer une C*-algèbre à une transformation continue. Ensuite, nousdonnons une nouvelle définition de l'entropie. Nous trouvons des relations entre les états KMS des algèbrespréalablement définies et les états d'équilibre, donné par un principe variationnel. Dans la seconde partie,nous étudions les algèbres de Kajiwara-Watatani associées à un système des fonctions itérées. Nouscomparons ces algèbres avec l'algèbre de Cuntz et le produit croisé. Enfin, nous étudions les états KMS desalgèbres de Kajiwara-Watatani pour les actions provenant d'un potentiel et nous trouvouns des relationsentre ces états et les mesures trouvée dans une version de le théorème de Ruelle-Perron-Frobenius pour lessystèmes de fonctions itérées. / First, we study three ways of associating a C*-algebra to a continuous map. Then, we give a new definitionof entropy. We relate the KMS states of the previously defined algebras with the equilibrium states, givenby a variational principle. In the second part, we study the Kajiwara-Watatani algebras associated toiterated function system. We compare these algebras with the Cuntz algebra and the crossed product.Finally, we study the KMS states of the Kajiwara-Watatani algebras for actions coming from a potentialand we relate such states with measures found in a version of the Ruelle-Perron-Frobenius theorem foriterated function systems.
|
2 |
Groupoid C*-algebras, conformal measures and phase transitions / C*-álgebras de grupóides, medidas conformes e transições de faseFrausino, Rodrigo Souza 06 July 2018 (has links)
The objective of this work is the study of phase transitions on the context of Groupoids and their C*-Algebras. The main result of this dissertation is due to Klaus Thomsen in [Tho17], which investigates the connection between conformal measures in the classical formalism and KMS-states in the quantum formalism. The phase transition in the quantum setting is a consequence of this connection between both formalisms and the fact that on the classical setting it was known examples of continuous potentials that show the phenomena of phase transition. The potential used was introduced by Hofbauer [Hof77], an example that shows, dierently from potential of summable variations, potentials only continuous can exhibit phase transition. / O objetivo deste trabalho é o estudo do fenômeno de transição de fase no contexto de Grupóides e suas C*-álgebras. O resultado principal é devido a Klaus Thomsen em [Tho17], que explora a conexão entre medidas conformes no formalismo clássico e estados KMS do contexto quântico. A transição de fase no caso quântico é consequência desta ligação entre os dois formalismos e do fato de que no setting clássico eram conhecidos exemplos de potenciais contínuos que apresentam o fenômeno de transição de fase. O potencial utilizado é aquele introduzido por Hofbauer [Hof77], um exemplo que mostra que, diferentemente de potenciais de variação somável, potenciais apenas contínuos podem apresentar transição de fase.
|
3 |
C*-álgebras associadas a certas dinâmicas e seus estados KMSCastro, Gilles Gonçalves de January 2009 (has links)
D'abord, on étudie trois façons d'associer une C*-algèbre à une transformation continue. Ensuite, nous donnons une nouvelle définition de l'entropie. Nous trouvons des relations entre les états KMS des algèbres préalablement définies et les états d'équilibre, donné par un principe variationnel. Dans la seconde partie, nous étudions les algèbres de Kajiwara-Watatani associees a un système des fonctions itérées. Nous comparons ces algèbres avec l'algèbre de Cuntz et le produit croisé. Enfin, nous étudions les états KMS des algèbres de Kajiwara-Watatani pour les actions provenant d'un potentiel et nous trouvouns des relations entre ces états et les mesures trouvee dans une version de le théorème de Ruelle-Perron-Frobenius pour les systèmes de fonctions itérées. / Primeiramente, estudamos três formas de associar uma C*-álgebra a uma transformação contínua. Em seguida, damos uma nova definição de entropia. Relacionamos, então, os estados KMS das álgebras anteriormente definidas com os estados de equilibro, vindos de um princípio variacional. Na segunda parte, estudamos as álgebras de Kajiwara-Watatani associadas a um sistema de funções iteradas. Comparamos tais álgebras com a álgebra de Cuntz e a álgebra do produto cruzado. Finalmente, estudamos os estados KMS das álgebras de Kajiwara-Watatani para ações vindas de um potencial e relacionamos tais estados KMS com medidas encontradas numa versão do teorema de Ruelle-Perron-Frobenius para sistemas de funções iteradas. / First, we study three ways of associating a C*-algebra to a continuous map. Then, we give a new de nition of entropy. We relate the KMS states of the previously de ned algebras with the equilibrium states, given by a variational principle. In the second part, we study the Kajiwara-Watatani algebras associated to iterated function system. We compare these algebras with the Cuntz algebra and the crossed product. Finally, we study the KMS states of the Kajiwara-Watatani algebras for actions coming from a potential and we relate such states with measures found in a version of the Ruelle-Perron- Frobenius theorem for iterated function systems.
|
4 |
C*-álgebras associadas a certas dinâmicas e seus estados KMSCastro, Gilles Gonçalves de January 2009 (has links)
D'abord, on étudie trois façons d'associer une C*-algèbre à une transformation continue. Ensuite, nous donnons une nouvelle définition de l'entropie. Nous trouvons des relations entre les états KMS des algèbres préalablement définies et les états d'équilibre, donné par un principe variationnel. Dans la seconde partie, nous étudions les algèbres de Kajiwara-Watatani associees a un système des fonctions itérées. Nous comparons ces algèbres avec l'algèbre de Cuntz et le produit croisé. Enfin, nous étudions les états KMS des algèbres de Kajiwara-Watatani pour les actions provenant d'un potentiel et nous trouvouns des relations entre ces états et les mesures trouvee dans une version de le théorème de Ruelle-Perron-Frobenius pour les systèmes de fonctions itérées. / Primeiramente, estudamos três formas de associar uma C*-álgebra a uma transformação contínua. Em seguida, damos uma nova definição de entropia. Relacionamos, então, os estados KMS das álgebras anteriormente definidas com os estados de equilibro, vindos de um princípio variacional. Na segunda parte, estudamos as álgebras de Kajiwara-Watatani associadas a um sistema de funções iteradas. Comparamos tais álgebras com a álgebra de Cuntz e a álgebra do produto cruzado. Finalmente, estudamos os estados KMS das álgebras de Kajiwara-Watatani para ações vindas de um potencial e relacionamos tais estados KMS com medidas encontradas numa versão do teorema de Ruelle-Perron-Frobenius para sistemas de funções iteradas. / First, we study three ways of associating a C*-algebra to a continuous map. Then, we give a new de nition of entropy. We relate the KMS states of the previously de ned algebras with the equilibrium states, given by a variational principle. In the second part, we study the Kajiwara-Watatani algebras associated to iterated function system. We compare these algebras with the Cuntz algebra and the crossed product. Finally, we study the KMS states of the Kajiwara-Watatani algebras for actions coming from a potential and we relate such states with measures found in a version of the Ruelle-Perron- Frobenius theorem for iterated function systems.
|
5 |
C*-álgebras associadas a certas dinâmicas e seus estados KMSCastro, Gilles Gonçalves de January 2009 (has links)
D'abord, on étudie trois façons d'associer une C*-algèbre à une transformation continue. Ensuite, nous donnons une nouvelle définition de l'entropie. Nous trouvons des relations entre les états KMS des algèbres préalablement définies et les états d'équilibre, donné par un principe variationnel. Dans la seconde partie, nous étudions les algèbres de Kajiwara-Watatani associees a un système des fonctions itérées. Nous comparons ces algèbres avec l'algèbre de Cuntz et le produit croisé. Enfin, nous étudions les états KMS des algèbres de Kajiwara-Watatani pour les actions provenant d'un potentiel et nous trouvouns des relations entre ces états et les mesures trouvee dans une version de le théorème de Ruelle-Perron-Frobenius pour les systèmes de fonctions itérées. / Primeiramente, estudamos três formas de associar uma C*-álgebra a uma transformação contínua. Em seguida, damos uma nova definição de entropia. Relacionamos, então, os estados KMS das álgebras anteriormente definidas com os estados de equilibro, vindos de um princípio variacional. Na segunda parte, estudamos as álgebras de Kajiwara-Watatani associadas a um sistema de funções iteradas. Comparamos tais álgebras com a álgebra de Cuntz e a álgebra do produto cruzado. Finalmente, estudamos os estados KMS das álgebras de Kajiwara-Watatani para ações vindas de um potencial e relacionamos tais estados KMS com medidas encontradas numa versão do teorema de Ruelle-Perron-Frobenius para sistemas de funções iteradas. / First, we study three ways of associating a C*-algebra to a continuous map. Then, we give a new de nition of entropy. We relate the KMS states of the previously de ned algebras with the equilibrium states, given by a variational principle. In the second part, we study the Kajiwara-Watatani algebras associated to iterated function system. We compare these algebras with the Cuntz algebra and the crossed product. Finally, we study the KMS states of the Kajiwara-Watatani algebras for actions coming from a potential and we relate such states with measures found in a version of the Ruelle-Perron- Frobenius theorem for iterated function systems.
|
6 |
C*-algebras from actions of congruence monoidsBruce, Chris 20 April 2020 (has links)
We initiate the study of a new class of semigroup C*-algebras arising from number-theoretic
considerations; namely, we generalize the construction of Cuntz, Deninger,
and Laca by considering the left regular C*-algebras of ax+b-semigroups from actions
of congruence monoids on rings of algebraic integers in number fields. Our motivation
for considering actions of congruence monoids comes from class field theory and work
on Bost–Connes type systems. We give two presentations and a groupoid model for
these algebras, and establish a faithfulness criterion for their representations. We
then explicitly compute the primitive ideal space, give a semigroup crossed product
description of the boundary quotient, and prove that the construction is functorial
in the appropriate sense. These C*-algebras carry canonical time evolutions, so that
our construction also produces a new class of C*-dynamical systems. We classify the
KMS (equilibrium) states for this canonical time evolution, and show that there are
several phase transitions whose complexity depends on properties of a generalized
ideal class group. We compute the type of all high temperature KMS states, and
consider several related C*-dynamical systems. / Graduate
|
7 |
[en] TOMITA-TAKESAKI THEOREM AND KMS STATES / [pt] O TEOREMA DE TOMITA-TAKESAKI E OS ESTADOS KMSEDHIN FRANKLIN MAMANI CASTILLO 06 November 2018 (has links)
[pt] Neste trabalho apresentamos a teoria de Tomita-Takesaki para uma álgebra de Von Neumann M com vetor cíclico separante u. Usamos o caso finito dimensional para motivar a teoria, depois prosseguimos para os argumentos analíticos geralmente empregados para provar o caso infinito dimensional. Também calculamos os operadores modulares da teoria para três exemplos padrão. Na mecânica estatística quântica, os estados de equilíbrio termodinâmico de um sistema físico com um número de partículas e volume finito são modelados pelos estados de Gibbs, enquanto no caso infinito eles são modelados pelos chamados estados KMS através da abordagem de álgebra de operadores. Mostramos como a teoria de Tomita-Takesaki fornece estados KMS naturais e a unicidade da evolução temporal do sistema físico para esses estados. / [en] In this work we present the Tomita-Takesaki theory for a Von Neumann algebra M with cyclic separating vector u. We use the finite-dimensional case to motivate the theory, and then proceed to the analytical arguments usually employed to prove the infinite dimensional case. Also, we calculate the modular operators from the theory for three standard examples. In quantum statistical mechanics, the thermodynamic equilibrium states of a physical system with finitely many particles and finite volume are modeled by Gibbs states, while in the infinite case they are modeled by the so called KMS states through the operator-algebraic approach.We show how Tomita-Takesaki theory provides natural KMS states and the uniqueness of the time
evolution of the physical system for those states.
|
Page generated in 0.0437 seconds