• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 49
  • 49
  • 49
  • 21
  • 19
  • 16
  • 13
  • 13
  • 12
  • 11
  • 11
  • 10
  • 10
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Explainable AI in Workflow Development and Verification Using Pi-Calculus

January 2020 (has links)
abstract: Computer science education is an increasingly vital area of study with various challenges that increase the difficulty level for new students resulting in higher attrition rates. As part of an effort to resolve this issue, a new visual programming language environment was developed for this research, the Visual IoT and Robotics Programming Language Environment (VIPLE). VIPLE is based on computational thinking and flowchart, which reduces the needs of memorization of detailed syntax in text-based programming languages. VIPLE has been used at Arizona State University (ASU) in multiple years and sections of FSE100 as well as in universities worldwide. Another major issue with teaching large programming classes is the potential lack of qualified teaching assistants to grade and offer insight to a student’s programs at a level beyond output analysis. In this dissertation, I propose a novel framework for performing semantic autograding, which analyzes student programs at a semantic level to help students learn with additional and systematic help. A general autograder is not practical for general programming languages, due to the flexibility of semantics. A practical autograder is possible in VIPLE, because of its simplified syntax and restricted options of semantics. The design of this autograder is based on the concept of theorem provers. To achieve this goal, I employ a modified version of Pi-Calculus to represent VIPLE programs and Hoare Logic to formalize program requirements. By building on the inference rules of Pi-Calculus and Hoare Logic, I am able to construct a theorem prover that can perform automated semantic analysis. Furthermore, building on this theorem prover enables me to develop a self-learning algorithm that can learn the conditions for a program’s correctness according to a given solution program. / Dissertation/Thesis / Doctoral Dissertation Computer Science 2020
22

NExpTime-complete Description Logics with Concrete Domains

Lutz, Carsten 20 May 2022 (has links)
Aus der Einleitung: „Description logics (DLs) are a family of logical formalisms well-suited for the representation of and reasoning about conceptual knowledge on an abstract logical level. However, for many knowledge representation applications, it is essential to integrate the abstract logical knowledge with knowledge of a more concrete nature. As an example, consider the modeling of manufacturing processes, where it is necessary to represent 'abstract' entities like subprocesses and workpieces and also 'concrete' knowledge, e.g., about the duration of processes and physical dimensions of the manufactured objects [2; 25].”
23

Semantic Web Foundations for Representing, Reasoning, and Traversing Contextualized Knowledge Graphs

Nguyen, Vinh Thi Kim January 2017 (has links)
No description available.
24

Lane-based Weaving Area Traffic Analysis Using Field Camera Data

Wei Lin (17582646) 03 January 2024 (has links)
<p dir="ltr">Vehicle weaving describes the lane-changing actions of vehicles, which is a critical aspect of traffic management and road design. This study focused on the weaving behavior of vehicles occurring between ramp merge and diverge areas. Weaving in these areas causes congestion and increases the risk of accidents, especially during heavy traffic. Redesigning such areas for enhanced safety requires a comprehensive analysis of the traffic conditions. Obtaining the weaving pattern is a challenge in the traffic industry. To address this challenge, we leveraged AI and image processing technology to develop algorithms for quantitative analysis of weaving using surveillance videos at the consecutive ramp merge and diverge areas. This approach can also determine the weaving patterns of passenger cars and trucks respectively. The experimental results captured the lane-based weaving behavior of around 30% of vehicles in the favorable areas. The captured weaving data is used as weaving data samples to derive an overall analysis of a weaving location. Remarkably, our approach can reduce the manual processing time for weaving analysis by more than 90%, making this highly practical for use.</p>
25

Reasoning in ELH w.r.t. General Concept Inclusion Axioms

Brandt, Sebastian 31 May 2022 (has links)
In the area of Description Logic (DL) based knowledge representation, research on reasoning w.r.t. general terminologies has mainly focused on very expressive DLs. Recently, though, it was shown for the DL EL, providing only the constructors conjunction and existential restriction, that the subsumption problem w.r.t. cyclic terminologies can be decided in polynomial time, a surprisingly low upper bound. In this paper, we show that even admitting general concept inclusion (GCI) axioms and role hierarchies in EL terminologies preserves the polynomial time upper bound for subsumption. We also show that subsumption becomes co-NP hard when adding one of the constructors number restriction, disjunction, and `allsome', an operator used in the DL k-rep. An interesting implication of the first result is that reasoning over the widely used medical terminology snomed is possible in polynomial time.
26

Robust Representation Learning for Out-of-Distribution Extrapolation in Relational Data

Yangze Zhou (18369795) 17 April 2024 (has links)
<p dir="ltr">Recent advancements in representation learning have significantly enhanced the analysis of relational data across various domains, including social networks, bioinformatics, and recommendation systems. In general, these methods assume that the training and test datasets come from the same distribution, an assumption that often fails in real-world scenarios due to evolving data, privacy constraints, and limited resources. The task of out-of-distribution (OOD) extrapolation emerges when the distribution of test data differs from that of the training data, presenting a significant, yet unresolved challenge within the field. This dissertation focuses on developing robust representations for effective OOD extrapolation, specifically targeting relational data types like graphs and sets. For successful OOD extrapolation, it's essential to first acquire a representation that is adequately expressive for tasks within the distribution. In the first work, we introduce Set Twister, a permutation-invariant set representation that generalizes and enhances the theoretical expressiveness of DeepSets, a simple and widely used permutation-invariant representation for set data, allowing it to capture higher-order dependencies. We showcase its implementation simplicity and computational efficiency, as well as its competitive performances with more complex state-of-the-art graph representations in several graph node classification tasks. Secondly, we address OOD scenarios in graph classification and link prediction tasks, particularly when faced with varying graph sizes. Under causal model assumptions, we derive approximately invariant graph representations that improve extrapolation in OOD graph classification task. Furthermore, we provide the first theoretical study of the capability of graph neural networks for inductive OOD link prediction and present a novel representation model that produces structural pairwise embeddings, maintaining predictive accuracy for OOD link prediction as the test graph size increases. Finally, we investigate the impact of environmental data as a confounder between input and target variables, proposing a novel approach utilizing an auxiliary dataset to mitigate distribution shifts. This comprehensive study not only advances our understanding of representation learning in OOD contexts but also highlights potential pathways for future research in enhancing model robustness across diverse applications.</p>
27

Foundations and applications of knowledge representation for structured entities

Magka, Despoina January 2013 (has links)
Description Logics form a family of powerful ontology languages widely used by academics and industry experts to capture and intelligently manage knowledge about the world. A key advantage of Description Logics is their amenability to automated reasoning that enables the deduction of knowledge that has not been explicitly stated. However, in order to ensure decidability of automated reasoning algorithms, suitable restrictions are usually enforced on the shape of structures that are expressible using Description Logics. As a consequence, Description Logics fall short of expressive power when it comes to representing cyclic structures, which abound in life sciences and other disciplines. The objective of this thesis is to explore ontology languages that are better suited for the representation of structured objects. It is suggested that an alternative approach which relies on nonmonotonic existential rules can provide a promising candidate for modelling such domains. To this end, we have built a comprehensive theoretical and practical framework for the representation of structured entities along with a surface syntax designed to allow the creation of ontological descriptions in an intuitive way. Our formalism is based on nonmonotonic existential rules and exhibits a favourable balance between expressive power and computational as well as empirical tractability. In order to ensure decidability of reasoning, we introduce a number of acyclicity criteria that strictly generalise many of the existing ones. We also present a novel stratification condition that properly extends `classical' stratification and allows for capturing both definitional and conditional aspects of complex structures. The applicability of our formalism is supported by a prototypical implementation, which is based on an off-the-shelf answer set solver and is tested over a realistic knowledge base. Our experimental results demonstrate improvement of up to three orders of magnitude in comparison with previous evaluation efforts and also expose numerous modelling errors of a manually curated biochemical knowledge base. Overall, we believe that our work lays the practical and theoretical foundations of an ontology language that is well-suited for the representation of structured objects. From a modelling point of view, our approach could stimulate the adoption of a different and expressive reasoning paradigm for which robustly engineered mature reasoners are available; it could thus pave the way for the representation of a broader spectrum of knowledge. At the same time, our theoretical contributions reveal useful insights into logic-based knowledge representation and reasoning. Therefore, our results should be of value to ontology engineers and knowledge representation researchers alike.
28

Processing Geometric Models of Assemblies to Structure and Enrich them with Functional Information / Analyse de modèles géométriques d'assemblages pour les structures et les enrichir avec des informations fonctionnelles

Shahwan, Ahmad 29 August 2014 (has links)
La maquette numérique d'un produit occupe une position centrale dans le processus de développement de produit. Elle est utilisée comme représentation de référence des produits, en définissant la forme géométrique de chaque composant, ainsi que les représentations simplifiées des liaisons entre composants. Toutefois, les observations montrent que ce modèle géométrique n'est qu'une représentation simplifiée du produit réel. De plus, et grâce à son rôle clé, la maquette numérique est de plus en plus utilisée pour structurer les informations non-géométriques qui sont ensuite utilisées dans diverses étapes du processus de développement de produits. Une demande importante est d'accéder aux informations fonctionnelles à différents niveaux de la représentation géométrique d'un assemblage. Ces informations fonctionnelles s'avèrent essentielles pour préparer des analyses éléments finis. Dans ce travail, nous proposons une méthode automatisée afin d'enrichir le modèle géométrique extrait d'une maquette numérique avec les informations fonctionnelles nécessaires pour la préparation d'un modèle de simulation par éléments finis. Les pratiques industrielles et les représentations géométriques simplifiées sont prises en compte lors de l'interprétation d'un modèle purement géométrique qui constitue le point de départ de la méthode proposée. / The digital mock-up (DMU) of a product has taken a central position in the product development process (PDP). It provides the geometric reference of the product assembly, as it defines the shape of each individual component, as well as the way components are put together. However, observations show that this geometric model is no more than a conventional representation of what the real product is. Additionally, and because of its pivotal role, the DMU is more and more required to provide information beyond mere geometry to be used in different stages of the PDP. An increasingly urging demand is functional information at different levels of the geometric representation of the assembly. This information is shown to be essential in phases such as geometric pre-processing for finite element analysis (FEA) purposes. In this work, an automated method is put forward that enriches a geometric model, which is the product DMU, with function information needed for FEA preparations. To this end, the initial geometry is restructured at different levels according to functional annotation needs. Prevailing industrial practices and representation conventions are taken into account in order to functionally interpret the pure geometric model that provides a start point to the proposed method.
29

Knowledge Extraction from Description Logic Terminologies / Extraction de connaissances à partir de terminologies en logique de description

Chen, Jieying 30 November 2018 (has links)
Un nombre croissant d'ontologies de grandes tailles ont été développées et mises à disposition dans des référentiels tels que le NCBO Bioportal. L'accès aux connaissances les plus pertinentes contenues dans les grandes ontologies a été identifié comme un défi important. À cette fin, nous proposons dans cette thèse trois notions différentes : modules d’ontologie minimale (sous-ontologies conservant toutes les implications sur un vocabulaire donné), meilleurs extraits ontologiques (certains petits nombres d’axiomes qui capturent le mieux les connaissances sur le vocabulaire permettant un degré de perte sémantique) et un module de projection (sous-ontologies d'une ontologie cible qui impliquent la subsomption, les requêtes d'instance et les requêtes conjonctives issues d'une ontologie de référence). Pour calculer le module minimal et le meilleur extrait, nous introduisons la notion de justification de subsomption en tant qu'extension de la justification (ensemble minimal d'axiomes nécessaires pour conserver une conséquence logique) pour capturer la connaissance de subsomption entre un terme et tous les autres termes du vocabulaire. De même, nous introduisons la notion de justifications de projection qui impliquent une conséquence pour trois requêtes différentes afin de calculer le module de projection. Enfin, nous évaluons nos approches en appliquant une implémentation prototype sur de grandes ontologies. / An increasing number of ontologies of large sizes have been developed and made available in repositories such as the NCBO Bioportal. Ensuring access to the most relevant knowledge contained in large ontologies has been identified as an important challenge. To this end, in this thesis, we propose three different notions: minimal ontology modules (sub-ontologies that preserve all entailments over a given vocabulary), best ontology excerpts (certain, small number of axioms that best capture the knowledge regarding the vocabulary by allowing for a degree of semantic loss) and projection module (sub-ontologies of a target ontology that entail subsumption, instance and conjunctive queries that follow from a reference ontology). For computing minimal module and best excerpt, we introduce the notion of subsumption justification as an extension of justification (a minimal set of axioms needed to preserve a logical consequence) to capture the subsumption knowledge between a term and all other terms in the vocabulary. Similarly, we introduce the notion of projection justifications that entail consequence for three different queries in order to computing projection module. Finally, we evaluate our approaches by applying a prototype implementation on large ontologies.
30

Grounding the interaction : knowledge management for interactive robots / Ancrer l’interaction : Gestion des connaissances pour la robotique interactive

Lemaignan, Severin 17 July 2012 (has links)
Avec le développement de la robotique cognitive, le besoin d’outils avancés pour représenter, manipuler, raisonner sur les connaissances acquises par un robot a clairement été mis en avant. Mais stocker et manipuler des connaissances requiert tout d’abord d’éclaircir ce que l’on nomme connaissance pour un robot, et comment celle-ci peut-elle être représentée de manière intelligible pour une machine. Ce travail s’efforce dans un premier temps d’identifier de manière systématique les besoins en terme de représentation de connaissance des applications robotiques modernes, dans le contexte spécifique de la robotique de service et des interactions homme-robot. Nous proposons une typologie originale des caractéristiques souhaitables des systèmes de représentation des connaissances, appuyée sur un état de l’art détaillé des outils existants dans notre communauté. Dans un second temps, nous présentons en profondeur ORO, une instanciation particulière d’un système de représentation et manipulation des connaissances, conçu et implémenté durant la préparation de cette thèse. Nous détaillons le fonctionnement interne du système, ainsi que son intégration dans plusieurs architectures robotiques complètes. Un éclairage particulier est donné sur la modélisation de la prise de perspective dans le contexte de l’interaction, et de son interprétation en terme de théorie de l’esprit. La troisième partie de l’étude porte sur une application importante des systèmes de représentation des connaissances dans ce contexte de l’interaction homme-robot : le traitement du dialogue situé. Notre approche et les algorithmes qui amènent à l’ancrage interactif de la communication verbale non contrainte sont présentés, suivis de plusieurs expériences menées au Laboratoire d’Analyse et d’Architecture des Systèmes au CNRS à Toulouse, et au groupe Intelligent Autonomous System de l’université technique de Munich. Nous concluons cette thèse sur un certain nombre de considérations sur la viabilité et l’importance d’une gestion explicite des connaissances des agents, ainsi que par une réflexion sur les éléments encore manquant pour réaliser le programme d’une robotique “de niveau humain” / With the rise of the so-called cognitive robotics, the need of advanced tools to store, manipulate, reason about the knowledge acquired by the robot has been made clear. But storing and manipulating knowledge requires first to understand what the knowledge itself means to the robot and how to represent it in a machine-processable way. This work strives first at providing a systematic study of the knowledge requirements of modern robotic applications in the context of service robotics and human-robot interaction. What are the expressiveness requirement for a robot? what are its needs in term of reasoning techniques? what are the requirement on the robot's knowledge processing structure induced by other cognitive functions like perception or decision making? We propose a novel typology of desirable features for knowledge representation systems supported by an extensive review of existing tools in our community. In a second part, the thesis presents in depth a particular instantiation of a knowledge representation and manipulation system called ORO, that has been designed and implemented during the preparation of the thesis. We elaborate on the inner working of this system, as well as its integration into several complete robot control stacks. A particular focus is given to the modelling of agent-dependent symbolic perspectives and their relations to theories of mind. The third part of the study is focused on the presentation of one important application of knowledge representation systems in the human-robot interaction context: situated dialogue. Our approach and associated algorithms leading to the interactive grounding of unconstrained verbal communication are presented, followed by several experiments that have taken place both at the Laboratoire d'Analyse et d'Architecture des Systèmes at CNRS, Toulouse and at the Intelligent Autonomous System group at Munich Technical University. The thesis concludes on considerations regarding the viability and importance of an explicit management of the agent's knowledge, along with a reflection on the missing bricks in our research community on the way towards "human level robots"

Page generated in 0.1884 seconds