• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • 1
  • Tagged with
  • 13
  • 13
  • 13
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

<strong>TOWARDS A TRANSDISCIPLINARY CYBER FORENSICS GEO-CONTEXTUALIZATION FRAMEWORK</strong>

Mohammad Meraj Mirza (16635918) 04 August 2023 (has links)
<p>Technological advances have a profound impact on people and the world in which they live. People use a wide range of smart devices, such as the Internet of Things (IoT), smartphones, and wearable devices, on a regular basis, all of which store and use location data. With this explosion of technology, these devices have been playing an essential role in digital forensics and crime investigations. Digital forensic professionals have become more able to acquire and assess various types of data and locations; therefore, location data has become essential for responders, practitioners, and digital investigators dealing with digital forensic cases that rely heavily on digital devices that collect data about their users. It is very beneficial and critical when performing any digital/cyber forensic investigation to consider answering the six Ws questions (i.e., who, what, when, where, why, and how) by using location data recovered from digital devices, such as where the suspect was at the time of the crime or the deviant act. Therefore, they could convict a suspect or help prove their innocence. However, many digital forensic standards, guidelines, tools, and even the National Institute of Standards and Technology (NIST) Cyber Security Personnel Framework (NICE) lack full coverage of what location data can be, how to use such data effectively, and how to perform spatial analysis. Although current digital forensic frameworks recognize the importance of location data, only a limited number of data sources (e.g., GPS) are considered sources of location in these digital forensic frameworks. Moreover, most digital forensic frameworks and tools have yet to introduce geo-contextualization techniques and spatial analysis into the digital forensic process, which may aid digital forensic investigations and provide more information for decision-making. As a result, significant gaps in the digital forensics community are still influenced by a lack of understanding of how to properly curate geodata. Therefore, this research was conducted to develop a transdisciplinary framework to deal with the limitations of previous work and explore opportunities to deal with geodata recovered from digital evidence by improving the way of maintaining geodata and getting the best value from them using an iPhone case study. The findings of this study demonstrated the potential value of geodata in digital disciplinary investigations when using the created transdisciplinary framework. Moreover, the findings discuss the implications for digital spatial analytical techniques and multi-intelligence domains, including location intelligence and open-source intelligence, that aid investigators and generate an exceptional understanding of device users' spatial, temporal, and spatial-temporal patterns.</p>
12

PLANT LEVEL IIOT BASED ENERGY MANAGEMENT FRAMEWORK

Liya Elizabeth Koshy (14700307) 31 May 2023 (has links)
<p><strong>The Energy Monitoring Framework</strong>, designed and developed by IAC, IUPUI, aims to provide a cloud-based solution that combines business analytics with sensors for real-time energy management at the plant level using wireless sensor network technology.</p> <p>The project provides a platform where users can analyze the functioning of a plant using sensor data. The data would also help users to explore the energy usage trends and identify any energy leaks due to malfunctions or other environmental factors in their plant. Additionally, the users could check the machinery status in their plant and have the capability to control the equipment remotely.</p> <p>The main objectives of the project include the following:</p> <ul> <li>Set up a wireless network using sensors and smart implants with a base station/ controller.</li> <li>Deploy and connect the smart implants and sensors with the equipment in the plant that needs to be analyzed or controlled to improve their energy efficiency.</li> <li>Set up a generalized interface to collect and process the sensor data values and store the data in a database.</li> <li>Design and develop a generic database compatible with various companies irrespective of the type and size.</li> <li> Design and develop a web application with a generalized structure. Hence the database can be deployed at multiple companies with minimum customization. The web app should provide the users with a platform to interact with the data to analyze the sensor data and initiate commands to control the equipment.</li> </ul> <p>The General Structure of the project constitutes the following components:</p> <ul> <li>A wireless sensor network with a base station.</li> <li>An Edge PC, that interfaces with the sensor network to collect the sensor data and sends it out to the cloud server. The system also interfaces with the sensor network to send out command signals to control the switches/ actuators.</li> <li>A cloud that hosts a database and an API to collect and store information.</li> <li>A web application hosted in the cloud to provide an interactive platform for users to analyze the data.</li> </ul> <p>The project was demonstrated in:</p> <ul> <li>Lecture Hall (https://iac-lecture-hall.engr.iupui.edu/LectureHallFlask/).</li> <li>Test Bed (https://iac-testbed.engr.iupui.edu/testbedflask/).</li> <li>A company in Indiana.</li> </ul> <p>The above examples used sensors such as current sensors, temperature sensors, carbon dioxide sensors, and pressure sensors to set up the sensor network. The equipment was controlled using compactable switch nodes with the chosen sensor network protocol. The energy consumption details of each piece of equipment were measured over a few days. The data was validated, and the system worked as expected and helped the user to monitor, analyze and control the connected equipment remotely.</p> <p><br></p>
13

EXPLORING GRAPH NEURAL NETWORKS FOR CLUSTERING AND CLASSIFICATION

Fattah Muhammad Tahabi (14160375) 03 February 2023 (has links)
<p><strong>Graph Neural Networks</strong> (GNNs) have become excessively popular and prominent deep learning techniques to analyze structural graph data for their ability to solve complex real-world problems. Because graphs provide an efficient approach to contriving abstract hypothetical concepts, modern research overcomes the limitations of classical graph theory, requiring prior knowledge of the graph structure before employing traditional algorithms. GNNs, an impressive framework for representation learning of graphs, have already produced many state-of-the-art techniques to solve node classification, link prediction, and graph classification tasks. GNNs can learn meaningful representations of graphs incorporating topological structure, node attributes, and neighborhood aggregation to solve supervised, semi-supervised, and unsupervised graph-based problems. In this study, the usefulness of GNNs has been analyzed primarily from two aspects - <strong>clustering and classification</strong>. We focus on these two techniques, as they are the most popular strategies in data mining to discern collected data and employ predictive analysis.</p>

Page generated in 0.3019 seconds