Spelling suggestions: "subject:"korrosionsteknik"" "subject:"kompositionsteknik""
31 |
High temperature corrosion in a biomass-fired power boiler : Reducing furnace wall corrosion in a waste wood-fired power plant with advanced steam dataAlipour, Yousef January 2013 (has links)
The use of waste (or recycled) wood as a fuel in heat and power stations is becoming more widespread in Sweden (and Europe), because it is CO2 neutral with a lower cost than forest fuel. However, it is a heterogeneous fuel with a high amount of chlorine, alkali and heavy metals which causes more corrosion than fossil fuels or forest fuel. A part of the boiler which is subjected to a high corrosion risk is the furnace wall (or waterwall) which is formed of tubes welded together. Waterwalls are made of ferritic low-alloyed steels, due to their low price, low stress corrosion cracking risk, high heat transfer properties and low thermal expansion. However, ferritic low alloy steels corrode quickly when burning waste wood in a low NOx environment (i.e. an environment with low oxygen levels to limit the formation of NOx). Apart from pure oxidation two important forms of corrosion mechanisms are thought to occur in waste environments: chlorine corrosion and alkali corrosion. Although there is a great interest from plant owners to reduce the costs associated with furnace wall corrosion very little has been reported on wall corrosion in biomass boilers. Also corrosion mechanisms on furnace walls are usually investigated in laboratories, where interpretation of the results is easier. In power plants the interpretation is more complicated. Difficulties in the study of corrosion mechanisms are caused by several factors such as deposit composition, flue gas flow, boiler design, combustion characteristics and flue gas composition. Therefore, the corrosion varies from plant to plant and the laboratory experiments should be complemented with field tests. The present project may thus contribute to fill the power plant corrosion research gap. In this work, different kinds of samples (wall deposits, test panel tubes and corrosion probes) from Vattenfall’s Heat and Power plant in Nyköping were analysed. Coated and uncoated samples with different alloys and different times of exposure were studied by scanning electron microscopy (SEM), energy dispersive x-ray analysis (EDX), X-ray diffraction (XRD) and light optical microscopy (LOM). The corrosive environment was also simulated by Thermo-Calc software. The results showed that a nickel alloy coating can dramatically reduce the corrosion rate. The corrosion rate of the low alloy steel tubes, steel 16Mo3, was linear and the oxide scale non-protective, but the corrosion rate of the nickel-based alloy was probably parabolic and the oxide much more protective. The nickel alloy and stainless steels showed good corrosion protection behavior in the boiler. This indicates that stainless steels could be a good (and less expensive) alternative to nickel-based alloys for protecting furnace walls. The nickel alloy coated tubes (and probe samples) were attacked by a potassium-lead combination leading to the formation of non-protective potassium lead chromate. The low alloy steel tubes corroded by chloride attack. Stainless steels were attacked by a combination of chlorides and potassium-lead. The Thermo-Calc modelling showed chlorine gas exists at extremely low levels (less than 0.1 ppm) at the tube surface; instead the hydrated form is thermodynamically favoured, i.e. gaseous hydrogen chloride. Consequently chlorine can attack low alloy steels by gaseous hydrogen chloride rather than chlorine gas as previously proposed. This is a smaller molecule than chlorine which could easily diffuse through a defect oxide of the type formed on the steel. / <p>QC 20130423</p>
|
32 |
Co-firing animal waste, sludge, residue wood, peat and forest fuels in a 50MWth CFB boiler : ash transformation, availability and process improvementsHagman, Henrik January 2014 (has links)
The direct variable costs for heat and electricity production based on solid biomass fuel combustion is approximately 3-5 times lower than the costs in a fossil fuel-oil based boiler in Sweden. In addition waste derived biomass fuels are typically much cheaper than biomass not classified as waste. The introduction of the waste derived fuels; wastewater treatment sludge, demolition wood, and animal waste in a 50MWth circulating fluidized bed (CFB) biomass boiler located in Perstorp, Sweden, led to rapid deposit buildup in superheaters, heavy ash accumulation in economizers and failing boiler tubes and vortex finders that forced frequent boiler shutdowns. This in turn increased the use of expensive oil (fossil fuel) in backup boilers and the CO2 footprint of the on-site energy conversion system. This work aims to increase the general mechanistic understanding of combustion systems using complex fuels, and includes: A mapping of the boiler failure and preventive maintenance statistics; elemental composition analysis of ash, deposits and fuel fractions; flue-gas composition measurements; chemical speciation analysis; an attempt to describe the overall ash transformation reactions and mass balance throughout the combustion process. Scanning electron microscope (SEM) equipped with energy dispersive X-ray spectroscopy (EDS) was used to analyze the elemental composition of ash and deposits. The SEM-EDS results were used together with data from X-ray powder diffraction (XRD) analysis, thermodynamic phase data, and equilibrium calculations in an attempt to quantify the crystalline phases and the overall ash transformation of the process. Based on the findings concerning ash transformation and the failure statistics, it has been possible to identify generic key parameters regarding boiler design and process parameters, enabling major improvements of the CFB boiler availability, a lower overall energy conversion cost and a reduced CO2 footprint. / Den direkta rörliga kostnaden för värme-och elproduktion baserad på fast biobränsle är ungefär 3-5 gånger lägre än kostnaden för fossiloljebaserad produktion. Avfallsklassade fasta biobränslen är vidare oftast betydligt billigare än fasta biobränslen som inte är klassade som avfall. Införandet av de avfallsklassade bränslena; reningsslam, rivningsvirke, och animaliskt avfall i en 50MWth cirkulerande fluidiserad bädd (CFB) -panna, ledde till kraftig beläggningstillväxt i överhettare och ackumulering av aska i ekonomisers, samt haveri av panntuber och centrumrör i cyklonerna, som tvingade fram frekventa pannstopp. Detta ökade i sin tur användningen aveldningsolja (fossilt bränsle) i reservkrafts-pannor vilket resulterade i ett större CO2 utsläpp och en högre kostnad för energiomvandlingen på siten. Detta arbete syftar till att öka den allmänna mekanistiska förståelsen av förbränningssystem som använder komplexa bränslen, och omfattar; haveri- och underhållsstatistik, elementarsammansättningsanalys av aska, beläggningar och bränslefraktioner, rökgasens sammansättning, kemisk specificering av askor och beläggningar, ett försök att beskriva de övergripande askomvandlingsreaktionerna, samt en massbalans för förbränningsprocessen. Svepelektronmikroskop (SEM) utrustat med energidispersiv röntgenspektroskopi (EDS) användes för att analysera den elementära sammansättningen av aska och beläggningar. SEM-EDS-resultaten användes tillsammans med pulverröntgendiffraktionsanalys (XRD), termodynamiska fasdata, och jämviktsberäkningar i ett försök att kvantifiera de kristallina faserna och de övergripande askomvandlingsreaktionerna i processen. Baserat på resultaten rörande askomvandling och haveristatistik, har det varit möjligt att identifiera generiska nyckelparametrar gällande panndesign och processparametrar, som möjliggjort stora förbättringar av CFB pannans tillgänglighet, en lägre totalkostnad för energiomvandlingen på siten samt ett minskat CO2-utsläpp.
|
Page generated in 0.0627 seconds