• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 24
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 29
  • 29
  • 29
  • 11
  • 10
  • 9
  • 8
  • 6
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Analysis and Control of the Boussinesq and Korteweg-de Vries Equations

Rivas, Ivonne January 2011 (has links)
No description available.
22

Applications of Adomian Decomposition Method to certain Partial Differential Equations

El-Houssieny, Mohamed E. January 2021 (has links)
No description available.
23

Propagation of solitary waves and undular bores over variable topography

Tiong, Wei K. January 2012 (has links)
Description of the interaction of a shallow-water wave with variable topography is a classical and fundamental problem of fluid mechanics. The behaviour of linear waves and isolated solitary waves propagating over an uneven bottom is well understood. Much less is known about the propagation of nonlinear wavetrains over obstacles. For shallow-water waves, the nonlinear wavetrains are often generated in the form of undular bores, connecting two different basic flow states and having the structure of a slowly modulated periodic wave with a solitary wave at the leading edge. In this thesis, we examine the propagation of shallow-water undular bores over a nonuniform environment, and also subject to the effect of weak dissipation (turbulent bottom friction or volume viscosity). The study is performed in the framework of the variable-coefficient Korteweg-de Vries (vKdV) and variable-coefficient perturbed Korteweg-de Vries (vpKdV) equations. The behaviour of undular bores is compared with that of isolated solitary waves subject to the same external effects. We show that the interaction of the undular bore with variable topography can result in a number of adiabatic and non-adiabatic effects observed in different combinations depending on the specific bottom profile. The effects include: (i) the generation of a sequence of isolated solitons -- an expanding large-amplitude modulated solitary wavetrain propagating ahead of the bore; (ii) the generation of an extended weakly nonlinear wavetrain behind the bore; (iii) the formation of a transient multi-phase region inside the bore; (iv) a nonlocal variation of the leading solitary wave amplitude; (v) the change of the characteristics wavelength in the bore; and (vi) occurrence of a ``modulation phase shift" due to the interaction. The non-adiabatic effects (i) -- (iii) are new and to the best of our knowledge, have not been reported in previous studies. We use a combination of nonlinear modulation theory and numerical simulations to analyse these effects. In our work, we consider four prototypical variable topography profiles in our study: a slowly decreasing depth, a slowly increasing depth , a smooth bump and a smooth hole, which leads to qualitatively different undular bore deformation depending on the geometry of the slope. Also, we consider (numerically) a rapidly varying depth topography, a counterpart of the ``soliton fission" configuration. We show that all the effects mentioned above can also be observed when the undular bore propagates over a rapidly changing bottom . We then consider the modification of the variable topography effects on the undular bore by considering weak dissipation due to turbulent bottom friction or volume viscosity. The dissipation is modelled by appropriate right-hand side terms in the vKdV equation. The developed methods and results of our work can be extended to other problems involving the propagation of undular bores (dispersive shock waves in general) in variable media.
24

Energy Preserving Methods For Korteweg De Vries Type Equations

Simsek, Gorkem 01 July 2011 (has links) (PDF)
Two well-known types of water waves are shallow water waves and the solitary waves. The former waves are those waves which have larger wavelength than the local water depth and the latter waves are used for the ones which retain their shape and speed after colliding with each other. The most well known of the latter waves are Korteweg de Vries (KdV) equations, which are widely used in many branches of physics and engineering. These equations are nonlinear long waves and mathematically represented by partial differential equations (PDEs). For solving the KdV and KdV-type equations, several numerical methods were developed in the recent years which preserve their geometric structure, i.e. the Hamiltonian form, symplecticity and the integrals. All these methods are classified as symplectic and multisymplectic integrators. They produce stable solutions in long term integration, but they do not preserve the Hamiltonian and the symplectic structure at the same time. This thesis concerns the application of energy preserving average vector field integrator(AVF) to nonlinear Hamiltonian partial differential equations (PDEs) in canonical and non-canonical forms. Among the PDEs, Korteweg de Vries (KdV) equation, modified KdV equation, the Ito&rsquo / s system and the KdV-KdV systems are discetrized in space by preserving the skew-symmetry of the Hamiltonian structure. The resulting ordinary differential equations (ODEs) are solved with the AVF method. Numerical examples confirm that the energy is preserved in long term integration and the other integrals are well preserved too. Soliton and traveling wave solutions for the KdV type equations are accurate as those solved by other methods. The preservation of the dispersive properties of the AVF method is also shown for each PDE.
25

Kompleks potansiyele sahip Sturm-Liouville operatörü için ters saçılma problemi ve bazı uygulamaları /

Çakır, Abdurrahman. Paşaoğlu, Bilender. January 2007 (has links) (PDF)
Tez (Yüksek Lisans) - Süleyman Demirel Üniversitesi, Fen Bilimleri Enstitüsü, Matematik Anabilim Dalı, 2007. / Kaynakça var.
26

Etude de l'équation de Korteweg-de Vries en variables lagrangiennes et sa contrôlabilité, stabilisation rapide d'une équation de Schrödinger et méthodes spectrales pour le calcul du contrôle optimal / Study of the Korteweg-de Vries equation in Lagrangian coordinates and its controllability, rapid stabilization of a Schrödinger equation and spectral methods for the numerical computation of the optimal control

Gagnon, Ludovick 27 June 2016 (has links)
Cette thèse est consacrée la contrôlabilité lagrangienne, l'étude du champ de vitesse de l'Équation de Korteweg-de Vries, le problème de stabilisation rapide d'une équation aux dérivées partielles linéaires et aux méthodes numériques permettant d'obtenir la convergence des contrôles numériques vers les contrôles optimaux. Dans la première partie, on montre, l'aide de la solution de N-solitons de l'équation de Korteweg-de Vries, qu'il est possible de faire sortir des particules du fluide l’extérieur d'un domaine déterminé en temps arbitrairement petit. Une meilleure approximation du champ de vitesse associée la solution de N-solitons est également présentée, permettant de retrouver en particulier une propriété typique des trajectoires des particules soumises des ondes solitaires : les particules situées plus haut dans le fluide ont un plus grand déplacement. Dans la deuxième partie, la stabilisation rapide d'une équation de Schrödinger est obtenue grâce une méthode inspirée du backstepping en dimension infinie. Une équation de Schrödinger stable est considérée comme l'image d'une transformation ayant comme domaine de définition les solutions de l'équation de Schrödinger stabilisé. La stabilisation de l'équation de Schrödinger est obtenue en montrant l'inversibilité de la transformation. La nouveauté du travail présentée est l'introduction d'une condition d’unicité sur la transformation. Finalement, un filtre spectral, une formulation mixte et une formulation de Nitsche sont proposées comme technique afin d'obtenir numériquement l’observabilité uniforme de l'équation des ondes semi-discrétisée avec une méthode spectrale de Legendre-Galerkin. Une étude numérique de la convergence des contrôles numériques sans l’admissibilité uniforme de l’opérateur de contrôle est également présentée. / This thesis is devoted to the Lagrangian controllability and the analysis of the particle trajectories for the Korteweg-de Vries equation, to the rapid stabilization problem of the bilinear Schrödinger equation and to the convergence of the numerical controls of the wave equation. In the first part, we prove that the N-solitons solution of the Korteweg-de Vries equation allows one to move the particles outside an arbitrarily long domain in an arbitrarily small time. A higher approximation of the velocity field associated to the N-soliton is also presented, allowing to recover a typical property of solitary waves: the higher the particle is located in the fluid, the greater its displacement. These results are of a nonlinear nature since there exists no linear approximation of solitons. In the second part, inspired by the backstepping method, the rapid stabilization of a linearized Schrödinger equation is obtained. The proof consists to prove the invertibility of a transformation mapping the equation to stabilize to a stable linearized Schrödinger equation. The key ingredient of this proof is the introduction of a uniqueness condition. In the last part, a spectral filter, a mixed method and the Nitsche's method are proposed as a remedy to the lack of uniformness of the discrete observability constant for the Legendre-Galerkin semi-discretization of the wave equation. A numerical study of the convergence of the numerical controls is also presented.
27

Contrôle d'équations dispersives pour les ondes de surface / Control of dispersive equations for surface waves

Capistrano Filho, Roberto De Almeida 20 February 2014 (has links)
Dans cette thèse, nous prouvons des résultats concernant le contrôle et la stabilisation d'équations dispersives étudiées sur un intervalle borné. Pour commencer, nous étudions la stabilisation interne du système de Gear-Grimshaw, qui est un système de deux équations de Korteweg-de-Vries (KdV) couplées. Nous obtenons une décroissance exponentielle de l'énergie totale associée au modèle en introduisant une fonction de Lyapunov convenable. Nous prouvons aussi des résultats de contrôlabilité à zéro et exacte pour l'équation de Korteweg-de Vries avec un contrôle distribué à support dans un sous-intervalle du domaine. Pour la contrôlabilité à zéro du système linéarisé, nous utilisons l'approche classique basée sur la dualité qui ramène le problème à l'étude d'une inégalité d'observabilité qui, dans ce travail, est établie à l'aide d'une inégalité de Carleman. Ensuite, utilisant des fonctions plateau, nous prouvons un résultat de contrôlabilité exacte. Dans les deux cas, le résultat concernant le système non linéaire est obtenu à l'aide d'un argument de point fixe. Enfin, dans la lignée du résultat de contrôlabilité au bord obtenu par L. Rosier pour KdV, nous prouvons que le système linéaire de Boussinesq de type KdV-KdV est exactement contrôlable lorsque des contrôles sont appliqués au bord. Notre méthode repose sur l'utilisation de multiplicateurs et l'approche de la dualité mentionnée ci-dessus. Lorsqu'un mécanisme d'amortissement est introduit au bord, nous montrons que le système non linéaire est aussi exactement contrôlable et que l'énergie associée au modèle décroit exponentiellement / This work is devoted to prove a series of results concerning the control and stabilization properties of dispersive models posed on a bounded interval. Initially, we study the internal stabilization of a coupled system of two Korteweg-de Vries equations (KdV), the so-called Gear-Grimshaw system. Defining a convenient Lyapunov function we obtain the exponential decay of the total energy associated to the model. We also prove results of null and exact controllability for the Korteweg-de Vries equation with a control acting internally on a subset of the domain. In the case of the null controllability for the linear model, we use a classical duality approach which reduces the problem to the study of an observability inequality that, in this work, is proved by means of a Carleman inequality. Then, making use of cut-off functions, the exact controllability is also investigated. In both cases, the result for the nonlinear system is obtained by means of fixed-point argument. Finally, in view of the result of the boundary controllability obtained by L. Rosier for the KdV equation, we prove that the linear Boussinesq system of KdV-KdV type is exactly controllable when the controls act in the boundary conditions. Our analysis is performed using multipliers and the duality approach mentioned above. Adding a damping mechanism in the boundary, it is proved that the nonlinear system is also exactly controllable and that the energy associated to the model decays exponentially
28

Equações dispersivas : estabilidade orbital de ondas viajantes perióricas / Dispersive equations : orbital stability of periodic traveling waves

Andrade, Thiago Pinguello de, 1985- 09 August 2014 (has links)
Orientador: Ademir Pastor Ferreira / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica / Made available in DSpace on 2018-08-25T19:57:48Z (GMT). No. of bitstreams: 1 Andrade_ThiagoPinguellode_D.pdf: 2608603 bytes, checksum: 20935cf463b03d1c5c1390b127a42f4f (MD5) Previous issue date: 2014 / Resumo: Nesta tese estudamos estabilidade orbital de ondas viajantes periódicas para modelos dispersivos. O estudo de ondas viajantes iniciou-se em meados do século XVIII quando John S. Russell estabeleceu que ondas de água em um canal raso possui evolução constante. A estratégia geral para se obter a estabilidade consiste em provar que a onda viajante em questão minimiza um funcional conservado restrito a uma certa variedade. No nosso contexto, seguindo tais ideias, minimizamos o funcional restrito a uma nova variedade. Embora acreditamos que a teoria possa ser aplicada a outros modelos, nos restringimos às equações de Benjamin-Bona-Mahony (BBM) com termo não linear fracionário e Korteweg-de Vries modificada (mKdV). Além disso, resultados similares para a equação de Gardner são obtidos, usando uma estreita relação que esta possui com a mKdV / Abstract: In this thesis we study the orbital stability of periodic traveling waves for dispersive models. The study of traveling waves started in the mid-18th century when John S. Russel established that the flow of water waves in a shallow channel has constant evolution. The general strategy to obtain stability consists in proving that the traveling wave in question minimizes a conserved functional restricted to a certain manifold. In our context, following such ideas, we minimize such a functional restricted to a new manifold. Although we believe our theory can be applied to other models, we deal with the Benjamin-Bona-Mahony (BBM) equation with fractional nonlinear terms and modified Korteweg-de Vries (mKdV) equation. Besides, similar stability results for the Gardner equation are obtained, using a close relation between this equation and the mKdV / Doutorado / Matematica / Doutor em Matemática
29

Analyse numérique de systèmes hyperboliques-dispersifs / Numerical analysis of hyperbolic-dispersive systems

Courtès, Clémentine 23 November 2017 (has links)
Le but de cette thèse est d’étudier certaines équations aux dérivées partielles hyperboliques-dispersives. Une part importante est consacrée à l’analyse numérique et plus particulièrement à la convergence de schémas aux différences finies pour l’équation de Korteweg-de Vries et les systèmes abcd de Boussinesq. L’étude numérique suit les étapes classiques de consistance et de stabilité. Nous transposons au niveau discret la propriété de stabilité fort-faible des lois de conservations hyperboliques. Nous déterminons l’ordre de convergence des schémas et le quantifions en fonction de la régularité de Sobolev de la donnée initiale. Si nécessaire, nous régularisons la donnée initiale afin de toujours assurer les estimations de consistance. Une étape d’optimisation est alors nécessaire entre cette régularisation et l’ordre de convergence du schéma. Une seconde partie est consacrée à l’existence d’ondes progressives pour l’équation de Korteweg de Vries-Kuramoto-Sivashinsky. Par des méthodes classiques de systèmes dynamiques : système augmenté, fonction de Lyapunov, intégrale de Melnikov, par exemple, nous démontrons l’existence d’ondes oscillantes de petite amplitude. / The aim of this thesis is to study some hyperbolic-dispersive partial differential equations. A significant part is devoted to the numerical analysis and more precisely to the convergence of some finite difference schemes for the Korteweg-de Vries equation and abcd systems of Boussinesq. The numerical study follows the classical steps of consistency and stability. The main idea is to transpose at the discrete level the weak-strong stability property for hyperbolic conservation laws. We determine the convergence rate and we quantify it according to the Sobolev regularity of the initial datum. If necessary, we regularize the initial datum for the consistency estimates to be always valid. An optimization step is thus necessary between this regularization and the convergence rate of the scheme. A second part is devoted to the existence of traveling waves for the Korteweg-de Vries-Kuramoto-Sivashinsky equation. By classical methods of dynamical systems : extended systems, Lyapunov function, Melnikov integral, for instance, we prove the existence of oscillating small amplitude traveling waves.

Page generated in 0.079 seconds