• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 46
  • 44
  • 11
  • 1
  • 1
  • Tagged with
  • 103
  • 48
  • 28
  • 25
  • 25
  • 25
  • 17
  • 11
  • 11
  • 10
  • 9
  • 9
  • 9
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Untersuchung der Beziehung zwischen Struktur und Aktivität der Dam DNA-Methyltransferase aus Escherichia coli mit Hilfe von biochemischen und biophysikalischen Methoden

Wielitzek, Lilianna. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2002--Dortmund.
42

Köldegenskaper hos RME / Cold Flow Properties of RME

Yebyo, Haben Tesfamariam January 2022 (has links)
Biodiesel är ett bra alternativ till petroleumdiesel. Produktion av biodiesel är en relativt enkel process. Vegetabilisk olja eller animaliskt fett reagerar med alkohol och omförestras till biodiesel (monoalkylestrar). En homogen katalysator, vanligen KOH eller NaOH, behövs för att reaktionen ska ske snabbt. Biodiesel har högre förbränningsverkningsgrad, högre cetantal, högre smörjbarhet samt mindre utsläpp av aromater och sulfider än petrodiesel. Dock har biodiesel sämre köldegenskaper än petrodiesel. Vid kyla bildas utfällningar, vilket utmanar producenter i länder med kallt klimat att de måste behandla produkten så att den klarar kylan under vintern samt uppfyller specificerade gränsvärden. Vid sämre köldegenskaper kan utfällningar orsaka igensättningar av pumpen i tankstationen samt filtret i dieselmotorn uppstå.  Detta arbete gick ut på att undersöka köldegenskaper och föreslå åtgärder som förbättrar köldegenskaperna hos RME tillverkat av Ecobränsle i Karlshamn. Arbetet omfattade studie på råvaran, produktionsprocessen och lagring. Under arbetets gång har ordinära analysdata som utförs månadsvis vid produktionen för kvalitetskontroll samt analysdata som gjordes i syfte att studera och minska utfällningarna sammanställts. Analyserna tillsammans med litteraturstudie användes till grund för identifiering och föreslag av åtgärder. Orsakerna till de noterade utfällningar hos Ecobränsles RME har visat sig vara fettsyrametylestrar (SFAME) och monoglycerider (MG). Båda grupperna har höga smältpunkter och sämre köldegenskaper. Ett sedimentationstest utfört vid -20 oC lagring har visat ökning av SFAME- halt från 6,1 vol.% till 18,79 vol.% i provets botten, vilket indikerar att SFAME huvudsakligen förorsakar utfällningarna. Ecobränsles månadstester från 10 tillfällen har visat MG-halt över 0,50 vikt% vilket är rekommendationsgränsen, dvs orsakar troligen även MG utfällningar.  Åtgärder som kan minska mängden SFAME omfattar vinteradditiv, kristallisation, modifikation av fettsyraalkylestrar. I detta arbete har kristallisation redogjorts i detalj. Åtgärder som minskar MG omfattar förbättring av reaktionsförhållande med tonvikt på optimering av alkohol till olja molförhållande samt adsorption med kiselbaserade adsorbenter. Vinteradditiv, fraktionerad kristallisation med tillsats av lösningsmedel och förbättring av reaktionsförhållande är de mest effektiva åtgärder. Användning av vinteradditiv samt minskning av mängden MG genom förbättring av reaktionsförhållanden har föreslagits som första åtgärdsalternativ för Ecobränsle då det är billigt och effektivt. Fraktionerad kristallisation med lösningsmedel kan vidtas som andra alternativ ifall signifikant förbättring av köldegenskaperna inte åstadkoms. / Biodiesel is a good alternative to petroleum diesel. Biodiesel production is a relatively simple process. Vegetable oil or animal fat reacts with alcohol and is transesterified to biodiesel (mono alkyl esters). A homogeneous catalyst, usually KOH or NaOH, is needed for the reaction to proceed rapidly. Biodiesel has a higher combustion efficiency, higher cetane number, higher lubricity and less emissions of aromatics and sulphides. However, biodiesel has poor cold flow properties. At low temperatures, precipitates form, which challenges producers in countries with cold climates that they must treat the product so that it can withstand the cold during the winter and meets specified lim it values. Precipitation may cause clogging of the pump in the filling station and the filter in the diesel engine.  This work investigates precipitates that have been noted in RME produced from Ecobränsle i Karlshamn and proposes methods that improve the cold flow properties of RME. The work included study of the raw material, the production process and storage. During the work, ordinary data analysis that are carried out monthly during RME production for quality control and data analysis that was made for the purpose of studying and solving the precipitates have been compiled from Ecobränsle. The analyzes together with literature studies were used as a basis for identifying the precipitates and proposing improvement methods. The causes have been shown to be fatty acid methyl esters (SFAME) and monoglycerides (MG). Both groups have high melting points and poorer cold flow properties at low temperature. A sedimentation test from sample stored at -20 oC for 8 months has shown an increase in SFAME composition from 6.1 vol.% to 18.79 vol.% at the bottom of the sample, which indicates that SFAME is the main cause of the precipitates noted in Ecobränsles RME. Ecobränsle's RME monthly conducted test from 10 occasions showed MG content above 0.50% by weight which is the solubility limit. Thus, even MG is likely to causes RME to precipitate.  Available methods used to reduce the amount of SFAME include winter additives, crystallization, modification of fatty acid alkyl esters. In this work, crystallization has been described thoroughly. Available methods used to reduce MG include improving the reaction conditions with emphasis on optimizing the alcohol to oil molar ratio and adsorption with silicon-based adsorbents. Winter additives, solvent crystallization and improvement of reaction conditions are the most effective ways to improve cold flow properties. The use of winter additives and MG reduction through improvement of reaction conditions have been proposed as a first alternative for Ecobränsle as it is cheap and efficient. Solvent crystallization could be considered as a second alternative if significant improvement of the cold flow properties is not achieved by the proposed methods.
43

Reinigung und Charakterisierung der Diethylentriaminpenta(methylenphosphonsäure) - DTPMP

Winkler, Andrea 20 January 2017 (has links)
Synthesebedingt fällt die DTPMP als dunkelbraune, zähflüssige Lösung mit zahlreichen Verunreinigungen an. Diese Arbeit beschäftigt sich mit der Herstellung einer hochreinen, festen DTPMP. Hierfür wurden zwei unterschiedliche Reinigungsmethoden untersucht. Durch Umkristallisation und anschließendes Rühren in Ethanol konnte mit 95 % eine höhere Reinheit als bisher veröffentlicht erzielt werden. Eine alternative Reinigungsmethode stellt die Ausfällung als Erdalkali-DTPMP-Salz und anschließende Auflösung in Schwefelsäure und Abtrennung des entstehenden Erdalkalisulfats dar, wobei eine Reinheit > 99 % erzielt wurde. Zur strukturellen Charakterisierung wurden zahlreiche Kristallisationsexperimente zur Züchtung von Kristallen der DTPMP als Säure und deren Alkali- und Erdalkalisalzen durchgeführt. Weiterhin wurde das thermische Verhalten der DTPMP und deren Salzen charakterisiert. Unter den zahlreichen möglichen Anwendungen der DTPMP wurde beispielhaft die Wirksamkeit auf die Gipskristallisation untersucht.
44

Kalorimetrische Untersuchung des Kristallisationsverhaltens unter dynamischer Abkühlung

Heidrich, Dario, Gehde, Michael 13 November 2019 (has links)
Eine kalorimetrische Kristallisationsuntersuchung unter dynamischer Abkühlung ist bisher noch nicht erfolgt, auch weil die klassischen DSC-Messsysteme hierfür thermisch zu träge sind und die Einschwingzeiten zu lang sind. Durch die Weiterentwicklung der Prüftechnik, insbesondere auf dem Gebiet der Hochgeschwindigkeitskalorimetrie, erscheint es jedoch erstmals möglich, das dynamische Abkühlverhalten prozessnah nachbilden zu können und die Auswirkung auf die Kristallisation zu untersuchen. Im Rahmen dieser Arbeit wurde daher versucht die dynamische Abkühlung einer Kunststoffschmelze aus PBT kalorimetrisch in Abhängigkeit der Werkzeugtemperatur und der Bauteilgeometrie nachzubilden, jeweils bei Betrachtung verschiedener Bauteiltiefen. Hierfür wurden numerisch nichtlineare Kühlratenverläufe bestimmt, die im Anschluss durch Segmentierung linearisiert und somit in ein FSC-Programm überführt werden konnten. Anhand der resultierenden Wärmestromverläufe konnte gezeigt werden, dass eine Interpretation der kalorimetrischen Erfassung unter dynamischer Abkühlung möglich ist und der Verlauf der Kristallisation in verschiedenen Bauteiltiefen in Abhängigkeit der weiteren Randbedingungen nachvollzogen werden kann. / A calorimetric investigation of the crystallization of thermoplastics under dynamic cooling has not performed yet, also because the classical DSC measuring systems are thermally too slow for this purpose and the corresponding settling times are too long. However, as a result of the further development of testing technology, especially in the field of high-speed calorimetry, it seems possible to simulate the dynamic cooling behavior of real processing and to investigate its effects on crystallization. In this work the dynamic cooling of a polymer melt was simulated calorimetrically depending on the tool temperature and the part geometry, in each case considering the different cooling behavior of different part depths. Therefore, numerically nonlinear cooling rate profiles were determined, which could then be linearized by segmentation and thus converted into a calorimetric program. On the basis of the resulting heat flow characteristics it could be shown that an interpretation of the calorimetric detection under dynamic cooling is possible and the course of the crystallization in different part depths can be reconstructed in dependence on the further boundary conditions.
45

Kristallisation von Polyestern unter theoretischen und prozessnahen thermischen Randbedingungen

Heidrich, Dario 11 January 2023 (has links)
Die mikro- und makroskopischen Eigenschaften teilkristalliner Thermoplasten werden insbesondere durch die lokale Kristallisation während der Verarbeitung geprägt. Trotz des allgegenwärtigen Einsatzes dieser Werkstoffe liegen über die grundlegenden Entstehungsmechanismen der Strukturausprägungen und die daraus resultierende Auswirkung auf das Eigenschaftsprofil noch immer große Wissensdefizite vor. Im Rahmen der vorliegenden Arbeit wurde daher das Kristallisationsverhalten an ausgewählten Vertretern der Polyester untersucht, um einen wissenschaftlichen Beitrag für das weitere Verständnis der prozessinduzierten Strukturausprägungen zu leisten. Der Fokus der Untersuchungen lag darauf, die Kristallisation und ihre werkstofflichen Auswirkungen sowohl unter rein theoretischen als auch unter prozessnahen thermischen Randbedingungen zu untersuchen. Erreicht wurde dies unter anderem durch labortechnische Analysen insbesondere mittels der Hochgeschwindigkeitskalorimetrie, der Strukturaufklärung und Eigenschaftserfassung spritzgegossener Probekörper sowie der Anwendung eines experimentell-simulativen Ansatzes zur Untersuchung des lokalen Abkühl- und Kristallisationsverhaltens durch die Finite-Differenzen-Methode. Die Ergebnisse zeigen, dass die durch die Verarbeitung induzierte Strukturausprägung der untersuchten Polyester nicht nur durch eine ausgeprägte Primär-, sondern auch durch die unmittelbar einsetzende Sekundärkristallisation geprägt wird. Dabei wird deutlich, dass die resultierende strukturelle Beschreibung zwingend nach dem 3-Phasenmodell erfolgen muss, da dieses neben der klassischen amorphen und kristallinen Phase zudem eine Zwischenphase berücksichtigt, welche die Phasenzusammensetzung maßgeblich prägen kann. / The micro- and macroscopic properties of semi-crystalline thermoplastics are particularly influenced by the local crystallization during processing. Despite the widespread use of these materials, there is still a significant lack of knowledge about the fundamental mechanisms of crystallization and the impact on the resulting profile of properties. Therefore, the crystallization behavior of selected representatives of polyesters was investigated in order to contribute to a scientific understanding of the process-induced structural characteristics. The focus of the investigations was on the crystallization and its material effects both under purely theoretical and process-related thermal boundary conditions. Among other things, this was achieved through laboratory studies especially using the Fast Scanning Calorimetry as well as the structure clarification and property detection of injection-molded specimens. Furthermore, the application of an experimental-simulative approach using the finite-difference method in order to investigate the local cooling and crystallization behavior was performed. The results show that the process-induced structural characteristics of the investigated polyesters are not only influenced by a pronounced primary crystallization, but also by immediately secondary crystallization. It becomes clear that the resulting structural description must necessarily follow the 3-phase model, since this also considers the classic amorphous and crystalline phase as well as an intermediate phase, which can significantly influence the phase composition.
46

Pyrolyse- und Sinterverhalten Sol-Gel-abgeleiteter Al2O3-YAG-Fasern / Pyrolysis and Sintering Behavior of Sol–Gel-Derived Al2O3-YAG Fibers

Krüger, Reinhard January 2002 (has links) (PDF)
Nichtwäßrige Sol-Gel-Vorstufen, die zu einem Mischgefüge aus Al2O3 und YAG führen (Volumenverhältnis 45 : 55), wurden zu Fasern versponnen, in unterschiedlichen Atmosphären pyrolysiert und abschließend gesintert. Die strukturelle Ent-wicklung während der Pyrolyse der Gel-Fasern wurde in Abhängigkeit von Pyrolysetemperatur (200-850 °C) und -atmosphäre beschrieben. Die Zusammenhänge zwischen den mittels der Pyrolyseparameter variierten amorphen Strukturen und dem daraus resultierenden Kristallisations- und Sinterverhalten sowie den mechanischen Fasereigenschaften wurden gezeigt. Die isotropen Gel-Fasern sind frei von Poren und weisen lokal regelmäßig angeordnete, organische Domänen mit mittleren Abständen von 2 nm innerhalb des anorganischen Matrixgerüsts auf. Während der Pyrolyse auftretende Strukturveränderungen hängen stark von der Atmosphäre und der Temperatur ab. In Luft- und Sauerstoffatmosphäre trat ab 600 °C innerhalb der Fasern lokal eine Kristallisation von YAG und Korund in Form kugeliger Bereiche auf, die zum Bruch der Fasern bereits während der Pyrolyse führten. Die Abgabe organischer Bestandteile erfolgte bei Pyrolyse in Stickstoff im wesentlichen zwischen 300 °C und 500 °C, blieb jedoch auch bei höheren Temperaturen unvollständig. In Wasserdampf-Atmosphäre kam es durch Hydrolysereaktionen zwischen 250 °C und 385 °C zu einer verbesserten Abgabe der organischen Bestandteile. Der Kohlenstoffgehalt sinkt bei 385 °C unter 2 Masse-%. Werden dem Wasserdampf saure Gase wie z.B. Stickoxide zugesetzt, wird um 200 °C die Hydrolyse und Abgabe der Organik zusätzlich verstärkt. Nach Pyrolyse in Stickstoff oder wasserhaltigen Atmosphären blieben die Fasern amorph. Bei Pyrolyse in Stickstoff war die Struktur der Fasern porenfrei, wobei die organischen Pyrolysatreste wie in den Gel-Fasern als regelmäßig angeordnete, isolierte Bereiche innerhalb einer anorganischen Matrix vorlagen. In Wasserdampf bildete sich ab 250 °C aus den organischen Domänen eine geordnete Porenstruktur, die sich mit ansteigender Temperatur vergröberte. Auch in der aus verdampfter Salpetersäure erzeugten Atmosphäre bildeten sich Poren. Die Porendurchmesser und spezifischen Oberflächen der Fasern blieben jedoch geringer als in reinem Wasserdampf. In dem anorganischen Matrixgerüst änderten sich durch die Pyrolyse die Koordinationsverhältnisse der Al-Ionen. Ausgehend von der mehrheitlich 6-fachen Koordination in den Gel-Fasern kam es zunehmend zur Umlagerung in die 4- und 5-fache Koordination. Bei Pyrolyse in reinem Wasserdampf war diese Koordinationsveränderung deutlich schwächer ausgeprägt als in Stickstoff oder der Atmosphäre aus verdampfter Salpetersäure. Während der Sinterung treten intermediär gamma-Al2O3 und hexagonales YAlO3 als metastabile Phasen vor der Kristallisation von YAG auf. Mit der Kristallisation von Korund schließt die Phasenbildung der Al2O3-YAG-Fasern je nach vorangegangener Pyrolysebehandlung zwischen 1275 °C und 1315 °C ab. Die Abweichungen in der Kristallisationstemperatur bzw. Keimbildungsdichte von Korund und im Sinterverhalten ließen sich auf die Unterschiede in den amorphen Strukturen der pyrolysierten Fasern zurückführen. Hohe Anteile 6-fach koordinierter Al-Ionen und eine zu hohen spezifischen Oberflächen führende, feine Porosität erwiesen sich als günstige Strukturmerkmale für pyrolysierte Fasern. Die dabei entstandenen feinkörnigen, homogenen Gefüge konnten dicht gesintert werden und hatten die höchsten Festigkeiten und E-Moduln. Kohlenstoffgehalte bis zu 2 Masse-% wirkten sich in den offenporigen Zwischenprodukten nicht negativ auf das Sinterverhalten aus. In dieser Arbeit wurde gezeigt, daß die Kristallisation der Sol-Gel-abgeleiteten Fasern und damit auch die Ausbildung der keramischen Gefüge in entscheidendem Maße von den Pyrolysebedingungen abhängen. Bei einheitlicher Synthese der Gel-Fasern lassen sich durch die Pyrolysebehandlung unterschiedliche Strukturen in den amorphen Zwischenprodukten einstellen, die durch ihre spezifisches Kristallisations- und Sinterverhalten zu unterschiedlichen keramischen Gefügen in den Fasern führen. Die Optimierung der Gefüge vorstufenabgeleiteter Keramiken durch Zusatz von Keimen ("Seeding") ist seit längerem bekannt. In Ergänzung dazu bietet die gezielte Wahl der Pyrolysebedingungen eine weitere Möglichkeit zur Steuerung der Gefügeausbildung in Sol-Gel-Keramiken. / Ceramic fibers of Al2O3-YAG composition (volume ratio 45 : 55) were prepared by spinning non-aqueous sol-gel precursors to fibers which were then pyrolyzed in various atmospheres and finally sintered. Structural development of the gel fibers upon pyrolysis at temperatures between 200 °C and 850 °C was described for different atmospheres. Variation of pyrolysis conditions lead to different amorphous structures. A correlation between the amorphous structures and their crystallization and sintering behavior as well as mechanical fiber properties could be established. The gel fibers have an isotropic, pore-free structure which is characterized by an inorganic matrix that contains organic domains in a locally ordered arrangement with mean distances of 2 nm. Alteration of this structure strongly depends on the type of atmosphere and temperature during pyrolysis. In air and oxygen above 600 °C local, spherulitic crystallization of YAG and corundum occurs within the fibers and leads to fracture of the fibers. In nitrogen, organic constituents are mainly removed between 300 and 500 °C, but residues remain even at higher temperatures. Water vapor hydrolyses organic constituents and enhances their release at 200-385 °C. Thus carbon contents drops below 2 wt.-% at 385 °C. Additional acceleration of hydrolysis at ~200 °C can be achieved by addition of acidic gases like nitric oxide to the moist atmosphere. The structure of fibers pyrolysed in nitrogen or moist atmospheres remains amorphous. After pyrolysis in nitrogen the fibers are pore-free and the organic residues still appear as locally ordered domains within an inorganic matrix. In water vapor from 250 °C on, the release of organics leads to the formation of ordered micropores that coarsen with further increasing temperature. In the atmosphere of evaporated nitric acid, pores form too, but pore sizes and specific surface areas of the fibers are lower than in pure water vapor. The coordination of Al-ions in the inorganic network is altered by pyrolysis. Gel fibers mainly contain 6-fold coordinated Al-ions. With increasing temperature a rearrangement of part of the octahedrally coordinated Al-ions to 4- and 5-fold coordination was observed. While this rearrangement was only weakly pronounced for fibers pyrolysed in water vapor, in nitrogen or the atmosphere that was derived from evaporated nitric acid a significantly higher proportion of 6-fold coordinated Al-ions rearranged to lower coordination numbers. During the sintering process gamma-Al2O3 and hexagonal YAlO3 are formed as intermediate metastable phases prior to the crystallization of YAG. Formation of crystalline phases in the Al2O3-YAG fibers completes with the crystallization of corundum at 1275 to 1315 °C depending on pyrolysis conditions. Differences in crystallization temperature and nucleation density of corundum were put down the structural features of pyrolysed, amorphous fibers. A high proportion of 6-fold coordinated Al-ions and a high specific surface caused by fine pores revealed as favorable characteristics of low corundum crystallization temperature and high nucleation density. Such fibers could be fully densified resulting in the highest strength and Young's moduli in the ceramic fibers. Carbon contents up to 2 wt.-% were not deleterious to the densification of pyrolysed fibers with an open porous structure. The results presented in this study show that crystallization and microstructural evolution of sol-gel derived ceramic fibers critically depend on pyrolysis conditions. Different amorphous structures that lead to altered ceramic microstructures can be obtained from uniformly synthesized gel fibers by variation of pyrolysis conditions. Seeding is a well known process for the microstructural optimization of precursor derived ceramics. As a supplement the choice of suitable pyrolysis conditions is a further tool for the microstructure control in sol-gel ceramics.
47

A novel view on the early stage of crystallization

Gebauer, Denis January 2008 (has links)
This thesis provides a novel view on the early stage of crystallization utilizing calcium carbonate as a model system. Calcium carbonate is of great economical, scientific and ecological importance, because it is a major part of water hardness, the most abundant Biomineral and forms huge amounts of geological sediments thus binding large amounts of carbon dioxide. The primary experiments base on the evolution of supersaturation via slow addition of dilute calcium chloride solution into dilute carbonate buffer. The time-dependent measurement of the Ca2+ potential and concurrent pH = constant titration facilitate the calculation of the amount of calcium and carbonate ions bound in pre-nucleation stage clusters, which have never been detected experimentally so far, and in the new phase after nucleation, respectively. Analytical Ultracentrifugation independently proves the existence of pre-nucleation stage clusters, and shows that the clusters forming at pH = 9.00 have a proximately time-averaged size of altogether 70 calcium and carbonate ions. Both experiments show that pre-nucleation stage cluster formation can be described by means of equilibrium thermodynamics. Effectively, the cluster formation equilibrium is physico-chemically characterized by means of a multiple-binding equilibrium of calcium ions to a ‘lattice’ of carbonate ions. The evaluation gives GIBBS standard energy for the formation of calcium/carbonate ion pairs in clusters, which exhibits a maximal value of approximately 17.2 kJ mol^-1 at pH = 9.75 and relates to a minimal binding strength in clusters at this pH-value. Nucleated calcium carbonate particles are amorphous at first and subsequently become crystalline. At high binding strength in clusters, only calcite (the thermodynamically stable polymorph) is finally obtained, while with decreasing binding strength in clusters, vaterite (the thermodynamically least stable polymorph) and presumably aragonite (the thermodynamically intermediate stable polymorph) are obtained additionally. Concurrently, two different solubility products of nucleated amorphous calcium carbonate (ACC) are detected at low binding strength and high binding strength in clusters (ACC I 3.1EE-8 M^2, ACC II 3.8EE-8 M^2), respectively, indicating the precipitation of at least two different ACC species, while the clusters provide the precursor species of ACC. It is proximate that ACC I may relate to calcitic ACC –i.e. ACC exhibiting short range order similar to the long range order of calcite and that ACC II may relate to vateritic ACC, which will subsequently transform into the particular crystalline polymorph as discussed in the literature, respectively. Detailed analysis of nucleated particles forming at minimal binding strength in clusters (pH = 9.75) by means of SEM, TEM, WAXS and light microscopy shows that predominantly vaterite with traces of calcite forms. The crystalline particles of early stages are composed of nano-crystallites of approximately 5 to 10 nm size, respectively, which are aligned in high mutual order as in mesocrystals. The analyses of precipitation at pH = 9.75 in presence of additives –polyacrylic acid (pAA) as a model compound for scale inhibitors and peptides exhibiting calcium carbonate binding affinity as model compounds for crystal modifiers- shows that ACC I and ACC II are precipitated in parallel: pAA stabilizes ACC II particles against crystallization leading to their dissolution for the benefit of crystals that form from ACC I and exclusively calcite is finally obtained. Concurrently, the peptide additives analogously inhibit the formation of calcite and exclusively vaterite is finally obtained in case of one of the peptide additives. These findings show that classical nucleation theory is hardly applicable for the nucleation of calcium carbonate. The metastable system is stabilized remarkably due to cluster formation, while clusters forming by means of equilibrium thermodynamics are the nucleation relevant species and not ions. Most likely, the concept of cluster formation is a common phenomenon occurring during the precipitation of hardly soluble compounds as qualitatively shown for calcium oxalate and calcium phosphate. This finding is important for the fundamental understanding of crystallization and nucleation-inhibition and modification by additives with impact on materials of huge scientific and industrial importance as well as for better understanding of the mass transport in crystallization. It can provide a novel basis for simulation and modelling approaches. New mechanisms of scale formation in Bio- and Geomineralization and also in scale inhibition on the basis of the newly reported reaction channel need to be considered. / Die vorliegende Arbeit zeichnet ein neuartiges Bild der frühen Kristallisationsphase von Calciumcarbonat. Calciumcarbonat hat als Hauptbestandteil der Wasserhärte und als weit verbreitetes Biomineral und Geomineral, das als Sediment in den Ozeanen große Mengen Kohlendioxid bindet, große Bedeutung. Die grundlegenden Experimente basieren auf der sehr langsamen Einstellung von Übersättigung, die durch langsame Zugabe verdünnter Calciumlösung in verdünnten Carbonatpuffer erreicht wird. Zeitabhängige Messung des Ca2+ Potentials bei gleichzeitiger pH = konstant Titration zeigt, dass zeitgemittelt vor der Nukleation gleiche Stoffmengen von Calcium- und Carbonat Ionen in Clustern gebunden sind, die bis jetzt noch nicht experimentell nachgewiesen werden konnten. Analytische Ultrazentrifugation belegt unabhängig die Existenz der Cluster, und es zeigt sich, dass sich die bei pH = 9,00 bildenden Cluster zeitgemittelt aus insgesamt etwa 70 Calcium und Carbonat Ionen bestehen. Die Experimente weisen darauf hin, dass sich die Clusterbildung auf der Grundlage von Gleichgewichtsthermodynamik beschreiben lässt. Ein multiples Bindungsgleichgewichtsmodell ermöglicht die Bestimmung der freien Standard Reaktionsenthalpie für die Bildung von Calcium/Carbonat Ionenpaaren in den Clustern, die ein Maß für die Bindungsstärke in Clustern darstellt. Die Bindungsstärke weist ein Minimum bei pH = 9,75 auf, und es zeigt sich, dass außerhalb dieses Minimums amorphes Calciumcarbonat ausfällt, das sich letztendlich in Calcit (das thermodynamisch stabile Calciumcarbonat Polymorph) umwandelt, während im Minimum und in der Nähe des Minimums amorphes Calciumcarbonat ausfällt, das sich letztendlich hauptsächlich in Vaterit (das thermodynamisch am wenigsten stabile Polymorph), Calcit und möglicherweise Spuren von Aragonit (das Polymorph mittlerer Stabilität) umwandelt. Gleichzeitig treten zwei unterschiedliche Löslichkeitsprodukte für das bei hoher und niedriger Bindungsstärke in Clustern ausgefällte, amorphe Calciumcarbonat auf (ACC I 3,1EE-8 M^2, ACC II 3,8EE-8 M^2). Das zeigt, dass die sich vor der Nukleation bildenden Cluster Vorläuferspezies (Precursor) des ausgefällten, amorphen Calciumcarbonats darstellen, wobei ACC I in der Literatur diskutiertem, calcitischem ACC entsprechen und ACC II vateritischem Calcit entsprechen kann. Eine detaillierte SEM, TEM, WAXS und Lichtmikroskopie Untersuchung der bei minimaler Bindungsstärke in Clustern (pH = 9,75) ausgefällten Partikel zeigt, dass sich hauptsächlich Vaterit mit Spuren von Calcit und möglicherweise Aragonit bildet. Die sich früh bildenden, kristallinen Partikel sind jeweils aus nano-Kristalliten von etwa 5 bis 10 nm Größe aufgebaut, die wie in Mesokristallen eine hohe wechselseitige Ordnung aufweisen. Die Untersuchung der frühen Kristallisation in Gegenwart von Additiven wurde ebenfalls bei minimaler Bindungsstärke in Clustern durchgeführt. Als Additive wurden Polyacrylsäure (PAA) als Beispiel für einen Hemmstoff gegen die Bildung von Verkalkungen und drei Peptide, die Bindungsaffinität zu Calciumcarbonat zeigen, als Beispiel für Kristallisations-Modifikatoren untersucht. Die Analyse zeigt, dass ACC I und ACC II parallel ausfallen; pAA stabilisiert ACC II gegenüber Kristallisation und führt dazu, dass es sich zugunsten von Kristallen, die sich aus ACC I bilden, auflöst, wobei letztendlich reines Calcit erhalten wird. Die Peptide hingegen hemmen die Bildung von Calcit in analoger Weise, wobei in einem Fall letztendlich reines Vaterit entsteht. Die Ergebnisse zeigen, dass die klassische Nukleationstheorie auf die Nukleation von Calciumcarbonat kaum anwendbar ist. Das metastabile System wird durch die Clusterbildung deutlich stabilisiert, und nicht Ionen, sondern Cluster sind die relevanten Spezies in der Nukleation. Wahrscheinlich ist das gefundene Konzept der Clusterbildung ein allgemeines Phänomen, das während der Kristallisation aller schwer löslichen Substanzen auftritt, da es auch für Calciumoxalat und Calciumphosphat qualitativ gezeigt werden konnte. Das Ergebnis ist wichtig für das fundamentale Verständnis der Nukleation, von Nukleationshemmung und der Modifikation von Kristallen mit Auswirkungen auf Materialen von großer industrieller und auch wissenschaftlicher Bedeutung. Ferner gibt es einen Hinweis, wie Masse während der Kristallisation –auch in Lebewesen transportiert werden kann und es kann einen neuen Ansatz für Kristallisationssimulationen liefern. Auf der Basis dieses neuartigen Reaktionskanals müssen neue Kristallisations-Mechanismen in Bio- und Geomineralization in Betracht gezogen werden.
48

Untersuchungen zur Kristallisation schwerlöslicher Salze aus übersättigten Lösungen

Graupner, Uta 21 July 2009 (has links) (PDF)
Mit Hilfe von phosphathaltigen Inhibitoren ist es möglich, hoch übersättigte Gipslösungen über einen vorgegebenen Zeitraum zu stabilisieren, und anschließend, zu einer definierten Zeit, Gips auszufällen. Damit können derartige Lösungen zur Permeabilitätsreduzierung von Grundwasserleitern eingesetzt werden. Untersuchungen zum Verlauf der Kristallisation zeigten die Abhängigkeit der Induktionszeit der Gipsbildung von pH-Wert, Temperatur, anwesenden Feststoffen und von der Übersättigung der Lösung. Die Wechselwirkungen zwischen Inhibitor und übersättigter Lösung, Gipskristallen und Sand werden sowohl durch Polyphosphathydrolyse als auch durch Adsorption des Inhibitors und Absorption im entstehenden Kristallisat bestimmt. In Säulenversuchen gelang es, in weiten Bereichen Gips abzuscheiden und die Porösität zu reduzieren. Ausgehend von den Untersuchungen zur Injektionsmethodik in den Säulenversuchen konnten im Feldtest technologische und geotechnische Parameter praxisnah getestet werden. Die Permeabilität des Grundwasserleiters wurde erfolgreich reduziert. Damit wurde ein weiteres niedrig viskoses Injektionsmittel zur Permeabilitätsreduzierung in Sedimenten mit niedrigen kf-Werten gefunden.
49

Veredlung von Gläsern aus industriellen Reststoffen durch Kristallisation und Emaillierung

Bielecka, Agnieszka 23 July 2009 (has links) (PDF)
Rückstände wie Filterstäube, Schlämme und Schlacken sind der Zusammensetzung nach den Alumosilikatgläsern zuzuordnen, besitzen aber in der Regel einen hohen Eisengehalt. Schmelzen dieser Stoffe besitzen eine niedrige Viskosität und zeigen eine sehr hohe Neigung zur Kristallisation. Glasige Erzeugnisse aus Recyclingschmelzen kann man durch Kristallisation in Glaskeramik überführen. Geschmolzene Schlacken und Aschen kristallisieren meist sehr schnell während der Abkühlung, so dass bei der Herstellung von Schlackenkeramik, die die Zielstellung der Arbeit ist, für die Produkte größtenteils keine thermische Nachbehandlung erforderlich ist. Die Anwesenheit der färbenden Oxide, wie Eisen-, Chrom-, Manganoxide u.a. tragen dazu bei, dass die Glaserzeugnisse schwarz bis dunkelgrün aussehen. Um die Einsatzmöglichkeiten und die Qualität der vorliegenden Produkte noch weiter zu verbessern, werden verschiedene Nachbehandlungs- und Oberflächenveredlungsverfahren auf ihre Anwendbarkeit untersucht. Die folgenden Punkte stehen im Vordergrund der Untersuchung: Mattierung der Oberflächen durch partielle Kristallisation, Modifizierung der chemischen Eigenschaften und Beschichtung mit farbigen Überzügen. Zur grundlegenden Charakterisierung der Gläser werden Untersuchungen der ausgewählten Eigenschaften vorgenommen. Nach Ermittlung charakteristischer Temperaturen für die Kristallisation werden Glasproben durch eine Temperaturbehandlung zur Kristallisation gebracht. Die entstandenen Kristallphasen wurden mittels röntgendiffraktometrischer Untersuchungen qualitativ und quantitativ charakterisiert.
50

Self-assembly and Mesocrystal Formation via Non-classical Crystallisation / Selbst-Assemblierung und Mesokristall-Darstellung mittels Nicht-klassischer Kristallisation

Bahrig, Lydia 05 January 2015 (has links) (PDF)
New materials can be fabricated using small scaled building blocks as a repetition unit. Nanoparticles with their unique size-tuneable properties from quantum confinement can especially be utilised to form two- and three-dimensional ordered assemblies to introduce them into what would normally be considered to be incompatible matrices. Furthermore, new collective properties that derive from the ordered arrangement of the building blocks, are accomplished. Additionally, different materials can be combined by mixing different building blocks during self-assembly, so that size ranges and material combinations that are difficult to achieve by other means can be formed. The arrangement of small particles into highly ordered arrangements can be realised via self-assembly. To achieve such assemblies, highly monodisperse nanoparticular building blocks with a size distribution below 5 % have to be synthesised. The production and variation in the size of both lead chalcogenide and noble metal nanoparticles is presented in this work. Moreover, the syntheses of multicomponential nanoparticles (PbSe/PbS and Au/PbS) are investigated. Non-classical crystallisation methodologies with their varyious self-assembly mechanisms are used for the formation of highly symmetrical mesocrystals and supracrystals. Analogous to classical crystallisation methods and their formation processes the interparticle interactions, attractive as well as repulsive, determine the resulting crystalline structure. Variation of the environmental parameters consequently leads to structural variation due to the changing interparticle interactions. In contrast to classical crystallisation the length scale of the interparticle forces stays constant as the size dimension of the self-assembled building unit is changed. Two different non-classical crystallisation pathways are investigated in this work. One pathway focuses on the slow destabilisation of nanoparticles in organic media by the addition of a non-solvent. In this approach optimisation of parameters for the formation of highly symmetrical three-dimensional mesostructures are studied. Furthermore, to shine some light onto the mechanism of self-assembly, the intrinsic arrangement of the building units in a mesocrystal and the steps of non-solvent addition are analysed. The mechanistic investigations explain the differences observed in mesocrystal formation between metal and semiconductor nanoparticles. The lower homogeneity of the building units of the metal nanoparticles leads to smaller and less defined superstructures in comparison to semiconductor building blocks. Another pathway of non-classical crystallisation is the usage of electrostatic interactions as the driving force for self-assembly and supracrystal formation. Therefore, the building blocks are transferred into aqueous media and stabilised with oppositely charged ligands. The well-know procedure for metal nanoparticles was adapted for semiconductor materials. The lower stability of these nanoparticles in aqueous solution induces an agglomeration of the semiconductor nanoparticles without including oppositely charged metal nanoparticles. The destabilisation effect can be increased by the addition of equally charged metal nanoparticles in a salting out type process. In comparison to the slow formation of mesocrystals achieved via destabilisation in an organic media (up to 4 weeks), the salting out procedure takes place within two hours, but the faster agglomeration causes a less well defined assembly of the building units in the mesocrystals. Moreover, the arrangement of semiconductor nanoparticles with organic molecules such as polymers and proteins was investigated in order to use the nanoparticles as a light harvesting component. In combination with the directly bound polymer the charge carrier may be directly transferred to the conductive thiophene-based polymer, so that infrared light can be transformed into an electrical signal for use in further applications such as solar cells. The advantage of the nanoparticle-protein system is the self-assembly across a liquid-liquid interface and additionally a Förster resonance energy transfer can occur at this phase boundary. Hence, it is possible to transfer highly energetic photons directly to biological samples without destroying the biological material.

Page generated in 0.0936 seconds