• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 46
  • 44
  • 11
  • 1
  • 1
  • Tagged with
  • 103
  • 48
  • 28
  • 25
  • 25
  • 25
  • 17
  • 11
  • 11
  • 10
  • 9
  • 9
  • 9
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Viscosity of slags / Viskosität von Schlacken

Bronsch, Arne 06 October 2017 (has links) (PDF)
Slags plays a significant role at high temperature processes. The estimation of the slag viscosity is vital for the safe run of e.g. entrained flow gasifiers. One opportunity of determination is rotational viscometry. This technique is disadvantageous in view of elevated temperatures, applied materials and the necessary time. Additionally, the viscosity can be predicted by the help of viscosity models, where viscosity is a function of slag composition and temperature. Due to changing slag properties within the technical processes, the calculated viscosities can hugely differ from measured ones. In this work, the viscosities of 42 slags where measured up to 100 Pa s and temperatures up to 1700 °C. Oxidizing and reducing conditions were applied. Additionally, selected slag samples were quenched at defined temperatures to qualitatively and quantitatively determine the formed minerals by X-ray diffraction (XRD). Differential temperature analysis (DTA) was applied to find the onset of crystallization for the complementation of investigations. The Einstein-Roscoe equation was chosen to improve the classic viscosity models. Reducing atmosphere decreased viscosity and the number of formed minerals was increased. Slags show a shear-thinning behavior above ca. 10 vol.-% of solid mineral matter. Also, Newtonian behavior was observed up to 60 vol.-%. To overcome problems with the kinetic cooling behavior of the slags, a viscosity approximation method was applied afterwards. This can result in optimized viscosity predictions when several preconditions are fulfilled.
82

β-nucleated isotactic polypropylene with different thermomechanical histories investigated by synchrotron X-ray

Chen, Jianhong 10 March 2015 (has links)
Isotactic polypropylene (iPP), as one of the most versatile commodity thermoplastic polymers, is a polymorphic material having several crystal modifications, among which the β-form exhibits higher performance including excellent impact strength and improved elongation at break.Up to now, the effective and convenient way to prepare the iPP with high content of β-phase has been successfully achieved by addition of certain β-nucleating agent. Since the coexistence of β-nucleating agent and flow (shear flow, extensional flow or mixed), which usually exists in common industrial processing, makes the crystallization process more complex, their combined effect on the structure evolution of polymers, especially in the early stage of crystallization is still not well understood. The mechanical properties of iPP depend strongly on its crystallinity, crystal orientation and morphology determined by the conditions during preparation. On the other hand, the mechanical properties of polymers can also be modulated by deformation processing, which is directly related to the deformation-induced structure transition. However, the transition mechanism of different crystal forms and structure-property correlation still remain unclear. In this thesis, time-resolved synchrotron X-ray scattering was firstly used for the in-situ study of the structural and morphological developments of β-nucleated iPP during shear-induced crystallization. It was found that the crystallization process was strongly influenced by the concentration of β-nucleating agent, shear rate and shear temperature. Then extension-induced crystallization was investigated by a novel melt draw experiment, where a different crystallization mechanism compared to the shear-induced crystallization was found. Subsequently, β-nucleated iPP samples with different thermomechanical histories were scanned by synchrotron X-ray microbeam to construct their overall morphological distributions, including distributions of crystallinity, lamellar thickness, orientation, etc. Finally, these morphology-identified samples were investigated by in-situ synchrotron X-ray measurements coupled with mechanical testing to follow the structure evolution during deformation at elevated temperature. It was found that the deformation behaviour of β-nucleated iPP was closely associated with its initial morphology, its subsequent variation during stretching as well as the stretching conditions including the stretching rate and stretching temperature. The current study would not only contribute to the development of crystallization and deformation theory but also be beneficial for the material design.
83

Viscosity of slags

Bronsch, Arne 13 July 2017 (has links)
Slags plays a significant role at high temperature processes. The estimation of the slag viscosity is vital for the safe run of e.g. entrained flow gasifiers. One opportunity of determination is rotational viscometry. This technique is disadvantageous in view of elevated temperatures, applied materials and the necessary time. Additionally, the viscosity can be predicted by the help of viscosity models, where viscosity is a function of slag composition and temperature. Due to changing slag properties within the technical processes, the calculated viscosities can hugely differ from measured ones. In this work, the viscosities of 42 slags where measured up to 100 Pa s and temperatures up to 1700 °C. Oxidizing and reducing conditions were applied. Additionally, selected slag samples were quenched at defined temperatures to qualitatively and quantitatively determine the formed minerals by X-ray diffraction (XRD). Differential temperature analysis (DTA) was applied to find the onset of crystallization for the complementation of investigations. The Einstein-Roscoe equation was chosen to improve the classic viscosity models. Reducing atmosphere decreased viscosity and the number of formed minerals was increased. Slags show a shear-thinning behavior above ca. 10 vol.-% of solid mineral matter. Also, Newtonian behavior was observed up to 60 vol.-%. To overcome problems with the kinetic cooling behavior of the slags, a viscosity approximation method was applied afterwards. This can result in optimized viscosity predictions when several preconditions are fulfilled.:List of Tables ............................................................................................................ vi List of Figures ........................................................................................................ viii Symbols and Abbreviations .................................................................................. xviii 1. Introduction and Aim ....................................................................................... 1 2. General Overview of Slag ............................................................................... 2 2.1 Viscosity ...................................................................................................... 2 2.1.1 Viscosity Introduction ........................................................................... 2 2.1.2 Flow behavior of fluids ......................................................................... 3 2.2 Slag Definition and Phase Diagrams ........................................................... 4 2.3 Solid Slag Structure .................................................................................... 5 2.4 Liquid Slag Structure ................................................................................. 10 2.5 Basicity and B/A-ratio ................................................................................ 11 2.6 Slag Components...................................................................................... 13 2.6.1 Silicon dioxide .................................................................................... 13 2.6.2 Aluminum oxide ................................................................................. 13 2.6.3 Calcium oxide .................................................................................... 15 2.6.4 Iron oxide ........................................................................................... 16 2.6.5 Magnesium Oxide .............................................................................. 18 2.6.6 Potassium Oxide ................................................................................ 19 2.6.7 Sodium Oxide .................................................................................... 20 2.6.8 Titanium Oxide ................................................................................... 21 2.6.9 Phosphorous ...................................................................................... 22 2.6.10 Sulfur .............................................................................................. 22 2.7 Summary of Last Chapters ........................................................................ 23 3. Slag Viscosity Toolbox .................................................................................. 25 3.1 Slag Viscosity Predictor............................................................................. 25 3.2 Slag Viscosity Database............................................................................ 26 3.3 Prediction Quality of Viscosity Models ....................................................... 27 4. Classic Slag Viscosity Modelling ................................................................... 30 4.1 Selected Classic Viscosity Models ............................................................ 31 4.1.1 S2 ....................................................................................................... 32 4.1.2 Watt-Fereday ..................................................................................... 32 4.1.3 Bomkamp ........................................................................................... 32 4.1.4 Shaw .................................................................................................. 32 4.1.5 Lakatos .............................................................................................. 33 4.1.6 Urbain ................................................................................................ 33 4.1.7 Riboud ............................................................................................... 33 4.1.8 Streeter .............................................................................................. 34 4.1.9 Kalmanovitch-Frank ........................................................................... 34 4.1.10 BBHLW .......................................................................................... 34 4.1.11 Duchesne ....................................................................................... 34 4.1.12 ANNliq ............................................................................................ 35 4.2 Need of Improvement in Viscosity Literature ............................................. 35 4.3 Summary of Last Chapters ........................................................................ 36 5. Advanced Slag Viscosity Modelling .............................................................. 37 5.1 Crystallization ............................................................................................ 37 5.1.1 Nucleation .......................................................................................... 38 5.1.2 Crystallization Rate ............................................................................ 39 5.1.3 Crystallization Measurement Methods ............................................... 39 5.2 Slag Properties Changes During Crystallization ........................................ 40 5.2.1 Slag Density ....................................................................................... 40 5.2.2 Solid Volume Fraction ........................................................................ 46 5.2.3 Estimation of Slag Composition During Cooling ................................. 46 5.3 Viscosity Depending on Particles and Shear Rate..................................... 47 5.3.1 Einstein-Roscoe Equation .................................................................. 48 5.3.2 Improved Modelling Approach by Modified Einstein-Roscoe .............. 49 5.4 Summary of Last Chapters ........................................................................ 50 6. Experimental Procedures ............................................................................. 52 6.1 Viscosity Measurements ........................................................................... 52 6.1.1 Estimating Parameter Ranges of Viscosity Measurements ................ 53 6.1.2 Viscosity Measurement Procedure ..................................................... 54 6.2 Thermal Analysis of Slags ......................................................................... 55 6.2.1 Experimental Conditions of DTA ........................................................ 55 6.3 Phase Determination ................................................................................. 55 6.3.1 Quench Experiment Processing ......................................................... 56 6.3.2 Phase Determination on XRD Results ............................................... 56 6.4 Summary of Last Chapters ........................................................................ 57 7. Results and Discussion ................................................................................ 58 7.1 Selected Slag Samples ............................................................................. 58 7.1.1 Slag Sample Composition Before Viscosity Measurements ............... 58 7.1.2 Slag Sample Composition After Viscosity Measurements .................. 59 7.2 General Results of Viscosity Measurements ............................................. 60 7.2.1 Viscosity under Air Atmosphere ......................................................... 63 7.2.2 Viscosity under Reducing Atmospheres ............................................. 65 7.2.3 Viscosity under Constant Partial Oxygen Pressure ............................ 66 7.2.4 Summary of Last Chapter .................................................................. 68 7.3 Mineral Formation ..................................................................................... 69 7.3.1 General Results on Primarily Mineral Formation ................................ 69 7.3.2 Influences on Primarily Mineral Formation ......................................... 70 7.3.3 Mineral Formation over Wide Temperature Ranges ........................... 71 7.3.4 Summary of Last Chapter .................................................................. 77 7.4 Results Obtained by DTA .......................................................................... 78 7.4.1 Comparing Results obtained by DTA and Quenching ........................ 80 7.4.2 Summary of Last Chapter .................................................................. 82 7.5 Shear Rate Influence on Slag Viscosity ..................................................... 82 7.5.1 Shear Rate Influence under Oxidizing Atmospheres .......................... 83 7.5.2 Shear Rate Influence under Reducing Atmospheres .......................... 87 7.5.3 Shear Rate Influence under Constant Atmospheres .......................... 91 7.5.4 Summary of chapter ........................................................................... 92 7.6 Atmospheric Influence on Viscosity ........................................................... 93 7.6.1 Summary of Last Chapter .................................................................. 95 7.7 Cooling Rate Influence on Slag Viscosity .................................................. 95 7.7.1 Summary of Last Chapter .................................................................. 97 8. Advanced Viscosity Modelling Approach ...................................................... 99 8.1 Prediction Quality of Classical Viscosity Models ........................................ 99 8.1.1 Selecting the Best Viscosity Model for Newtonian Flow ..................... 99 8.1.2 Summary of Last Chapter ................................................................ 103 8.2 Predicting Liquidus Temperature ............................................................. 103 8.2.1 Comparing Liquidus Calculations and Quenching Experiments ....... 103 8.2.2 Comparing DTA Results and Liquidus Calculations ......................... 105 8.2.3 Summary of Last Chapter ................................................................ 107 8.3 Predicting Liquid Slag Composition ......................................................... 108 8.3.1 Results of Slag Composition Calculations at Oxidizing Conditions ... 108 8.3.2 Results of Slag Composition Calculations at Reducing Conditions ... 110 8.3.3 Summary of Last Chapter ................................................................ 111 8.4 Modelling Approach ................................................................................ 112 8.4.1 Development of Datasets for Advanced Viscosity Modeling ............. 113 8.4.2 Summary of Last Chapter ................................................................ 116 8.5 Results of Advanced Slag Viscosity Modelling Approach ........................ 116 8.5.1 Summary of Last Chapter ................................................................ 121 9. Summary .................................................................................................... 123 10. Appendix: Information on Classic Viscosity Modelling ................................. 126 10.1 Backgrounds of Applied Viscosity Models............................................ 126 10.2 Viscosity Model of the BCURA (S2) ..................................................... 129 10.3 Watt-Fereday ....................................................................................... 130 10.4 Bomkamp ............................................................................................ 130 10.5 Shaw ................................................................................................... 131 10.6 Lakatos Model ..................................................................................... 132 10.7 Urbain Model ....................................................................................... 133 10.8 Riboud Model ...................................................................................... 134 10.9 Streeter Model ..................................................................................... 136 10.10 Kalmanovitch-Frank Model .................................................................. 137 10.11 BBHLW Model ..................................................................................... 137 10.12 Duchesne Model .................................................................................. 139 10.13 ANNliq Model ...................................................................................... 141 11. Appendix: Settings of Equilibrium Calculations ........................................... 143 12. Appendix: Parameters of Einstein-Roscoe Equation ................................... 153 13. Appendix: Ash and Slag Sample Preparation ............................................. 155 14. Appendix: Experimental Procedures: Viscometer ....................................... 159 14.1 General Viscometer Description .......................................................... 159 14.2 Temperature Calibration ...................................................................... 160 14.3 Viscometer Calibration ......................................................................... 160 14.4 Accuracy and Reproducibility of HT-Viscosity Measurements .............. 161 14.5 Influence of Inductive Heating .............................................................. 163 14.6 Influence of Measurement System Materials ....................................... 164 15. Appendix: Experimental Procedures: Quenching Furnace .......................... 167 16. Appendix: Slag Sample Parameters and Composition ................................ 168 17. Appendix: Slag Viscosity Measurements Results ....................................... 175 18. Appendix: Viscosities at Different Cooling Rates ........................................ 182 19. Appendix: Slag Viscosity Modelling: AALE Calculations ............................. 187 20. Appendix: Advanced Viscosity Modelling: a-factors .................................... 193 21. Appendix: Slag Mineral Phase Investigations and Modelling ...................... 197 22. Appendix: Results of DTA Measurements on Slags .................................... 207 23. Appendix: Advanced Slag Viscosity Modelling Approach ............................ 211 References ........................................................................................................... 228
84

Probing effects of organic solvents on paracetamol crystallization using in silico and orthogonal in situ methods

Chewle, Surahit 08 September 2023 (has links)
This work entails efforts to understand effects of solvent choice on paracetamol crystallization. Various techniques have been developed and implemented to study aforementioned. A clear-cut, direct evidence of two-step nucleation mechanism is demonstrated using a bench top Raman spectrometer and a novel method named as OSANO. / Polymorphismus ist die Eigenschaft vieler anorganischer und insbesondere organischer Moleküle, in mehr als einer Struktur zu kristallisieren. Es ist wichtig, die Faktoren zu verstehen, die den Polymorphismus beeinflussen, da er viele physikochemische Eigenschaften wie Stabilität und Löslichkeit beeinflusst. Nahezu 80 % der vermarkteten Medikamente weisen Polymorphismus auf. In dieser Arbeit wurde der Einfluss der Wahl des organischen Lösungsmittels auf den Polymorphismus von Paracetamol untersucht und verschiedene Methoden entwickelt und angewandt, um den Einfluss genauer zu verstehen. Es wurde festgestellt, dass Ethanol viel stärker auf Paracetamol-Kristallisation als Methanol wirkt. Nichtgleichgewichts-Molekulardynamiksimulationen mit periodischer, simulierter Abkühlung (Simulated Annealing) wurden verwendet, um Vorläufer der metastabilen Zwischenprodukte im Kristallisationsprozess zu untersuchen. Es wurde festgestellt, dass die Strukturen der Bausteine der Paracetamol-Kristalle durch geometrische Wechselwirkungen zwischen Lösungsmittel und Paracetamol bestimmt werden. Die statistisch häufigsten Bausteine in der Selbstassemblierung definieren die finale Kristallstruktur. Ein speziell angefertigter akustischer Levitator hat die Proben zuverlässig gehalten, wodurch die Untersuchung des Einflusses von Lösungsmitteln ermöglicht, heterogene Keimbildung abgeschwächt und andere Umgebungsfaktoren stabilisiert wurden. Die Kristallisation wurde in diesem Aufbau mit zeitaufgelöster In-situ-Raman-Spektroskopie verfolgt und mit einer neuen Zielfunktion basierenden Methode der nichtnegativen Matrixfaktorisierung (NMF) analysiert. Orthogonale Zeitrafferfotografie wurde in Verbindung mit NMF verwendet, um eindeutige und genaue Faktoren zu erhalten, die sich auf die Spektren und Konzentrationen verschiedener Anteile der Paracetamol-Kristallisation beziehen, die als latente Komponenten in den unbehandelten Daten vorhanden sind. / Polymorphism is the property exhibited by many inorganic and organic molecules to crystallize in more than one crystal structure. There is a strong need for understanding the influencing factors on polymorphism, as it is responsible for differences in many physicochemical properties such as stability and solubility. Nearly 80 % of marketed drugs exhibit polymorphism. In this work, we took the model system of paracetamol to investigate the influence of solvent choice on its polymorphism. Different methods were developed and employed to understand the influence of small organic solvents on the crystallization of paracetamol. Non-equilibrium molecular dynamics simulations with periodic simulated annealing were used as a tool to probe the nature of precursors of the metastable intermediates occurring in the crystallization process. Using this method, it was found that the structures of the building blocks of crystals of paracetamol is governed by solvent-solute interactions. In situ Raman spectroscopy was used with a custom-made acoustic levitator to follow crystallization. This set-up is a reliable method for investigating solvent influence, attenuating heterogeneous nucleation and stabilizing other environmental factors. It was established that as a solvent, ethanol is much stronger than methanol in its effect of driving paracetamol solutions to their crystal form. The time-resolved Raman spectroscopy crystallization data was processed using a newly developed objective function based non-negative matrix factorization method (NMF). An orthogonal time-lapse photography was used in conjunction with NMF to get unique and accurate factors that pertain to the spectra and concentrations of different moieties of paracetamol crystallization existing as latent components in the untreated data.
85

Strukturelle Änderungen in dünnen amorphen Zr-Al-Ni-Cu- und Ta-Si-N-Schichten

Bicker, Matthias 21 June 2000 (has links)
Mit verschiedenen experimentellen Methoden werden die strukturabhängigen Eigenschaften amorpher Zr-Al-Ni-Cu- und Ta-Si-N- Multikomponentenschichten untersucht. Aus Messungen der mechanischen Spannungen in amorphen Zr-Al-Ni-Cu-Schichten werden mit hoher Empfindlichkeit relative Volumenänderungen bestimmt, die bei Schichtwachstum, Relaxation und Kristallisation auftreten. Das Meßverfahren ermöglicht Untersuchungen der Spannungsrelaxation und Viskosität in der Nähe des Glasübergangs. Irreversible Spannungsrelaxationen unterhalb von Tg können mit der "Freie Volumen-Theorie" gedeutet werden. Als Ursache für eine schnelle Abnahme von Druckspannungen im Bereich des Glasübergangs wird dagegen ein Fließprozeß vorgeschlagen. Unmittelbar während der Kristallisation werden nur geringe Spannungsänderungen festgestellt. Aus Messungen der isothermen Spannungsrelaxation werden Viskositäten der amorphen Schichten bestimmt. Aus den Spannungsmessungen ergeben sich neue Erkenntnisse über das Relaxations- und Kristallisationsverhalten von Multikomponentengläsern. Es werden grundlegende Fragestellungen zu Entmischungs- und Kristallisationsvorgängen in amorphen Ta-Si-N-Schichten untersucht, die auch für technologische Anwendungen der Schichten als Diffusionsbarrieren relevant sind. ASAXS-, TEM- und XRD- Messungen ergeben, daß in amorphen Ta40Si14N46-Schichten bei Temperaturen zwischen 1073 K und 1273 K komplexe Prozesse, wie eine Phasenseparation und eine nachfolgende Nanokristallisation ablaufen. Diese Prozesse führen zu einer Bildung von Strukturen mit charakteristischen Ausdehnungen und wirken sich auf die mechanischen Spannungen aus. Durch die vorliegenden Ergebnisse wird gezeigt, daß die Stabilität der Diffusionsbarrieren bereits unterhalb der Kristallisationstemperatur durch die Entmischung und Nanokristallisation begrenzt ist.
86

Herstellung und Charakterisierung amorpher Al-Cr-Schichten

Stiehler, Martin 06 January 2005 (has links) (PDF)
Thin amorphous films of binary aluminum-chromium alloys have been produced by flash evaporation and characterized by means of electron diffraction and measurements of transport properties. Beside the known effect of hybridization on the phase stability an additional structure forming mechanism could be identified in the aluminum-chromium alloys and other amorphous binary aluminum-transition-metal alloys as well. A systematical influence of the transition-metal-d-electrons on the plasma resonance energies was found. / Es wurden amorphe Schichten von binären Aluminium-Chrom-Legierungen mit Hilfe abschreckender Kondensation aus der Gasphase hergestellt und einer elektronischen und strukturellen Charakterisierung unterzogen. Neben dem bereits bekannten Einfluss von Hybridisierungsmechanismen auf die Strukturbildung und Stabilität der amorphen Aluminium-Übergangsmetall-Legierungen, konnte ein weiterer Ordnungsmechanismus bei hohen Chrom-Anteilen gefunden werden. Im Vergleich mit anderen, bereits früher untersuchten, binären amorphen Aluminium-Übergangsmetall-Lergierungen, konnte gezeigt werden, dass dieses Verhalten auch dort auftritt. Desweiteren konnte eine Systematik im Einfluss der Übergangsmetall-d-Elektronen auf die Plasmaresonanz der Aluminium-Übergangsmetall-Legierungen gefunden werden.
87

Funktionelle Analyse des murinen 66.3-kDa-Proteins / Functional analysis of the murine 66.3-kDa protein

Kettwig, Matthias 29 November 2010 (has links)
No description available.
88

Szenarien der Strukturbildung in Al100-xÜMx-Legierungen und Halbleitern sowie Konsequenzen daraus für elektronischen Transport

Barzola Quiquia, Jose Luis 09 December 2003 (has links)
Im Rahmen dieser Arbeit wurden die Strukturbildung in amorphen Al-ÜM-Legierungen, Quasikristallen und amorphen Halbleitern, sowie die Temperatur- und Konzentrationsabhängigkeit der elektrischen Transportgrößen Widerstand und Thermokraft untersucht. Die Legierungen wurden in Form dünner Schichten durch abschreckende Kondensation aus der Dampfphase hergestellt. Die atomare Struktur wurde durch Elektronenbeugung analysiert. Für die Beschreibung der atomaren Struktur werden der Durchmesser der Fermikugel (im k-Raum) und die Friedel-Wellenlänge (im r-Raum) als interne Skalen benutzt. Nach der Skalierung der atomaren Struktur mit diesen Größen zeigen sich große Ähnlichkeiten zwischen ganz verschiedenen Systemen. Durch Kombination der Strukturdaten mit elektronischen Transportgrößen ist es möglich, ein bereits bekanntes Szenarium der Strukturbildung, das auf Resonanzen zwischen dem Elektronensystem als Ganzem und der sich bildenten statischen Struktur der Ionen aufgebaut ist, zu erweitern. Bei der Strukturbildung und ihrem Einfluß auf die elektronischen Transporteigenschaften und die Stabilität der amorphen Phase wird bei den Al-ÜM-Legierungen der Einfluss eines Hybridisierungsmechanismus zwischen den Alp- und den TMd-Elektronen diskutiert. Für die Beschreibung der atomaren Struktur der Al-ÜM-Legierungen wird außer der schon bekannten sphärisch-periodischen Ordnung ein neuer Typ von Ordnung beobachtet, welcher eine lokale Winkelordnung verursacht. Die sphärisch-periodische und die Winkelordnung lassen sich bei der Untersuchung mit verschiedenen Anlasstemperaturen, insbesondere bei den Proben, die einen kontinuierlichen Übergang von amorpher zu quasikristalliner Phase ausführen, beobachten. Die sphärisch-periodische Ordnung führt zu einem breiten Pseudogap in der elektronischen Zustandsdichte bei EF , die Winkelkorrelation bei Quasikristallen, durch die relativ weit reichende Ordnung, zu einem scharfen Pseudogap. Die Änderung der elektronischen Eigenschaften in der amorphen und quasikristallinen Phase als Funktion der Übergangsmetalle aber auch als Funktion der Temperatur kann quantitativ mit dem Konzept der Spektralleitfähigkeit beschrieben werden, das auf zwei Pseudo-Energerielücken an der Fermikante beruht. Die Resonanz, die zu Winkelkorrelationen führt, wird bei amorphen Halbleitern weiter getestet. Es werden dazu sowohl reine Elemente als auch binäre Legierungen untersucht.
89

Herstellung und Charakterisierung amorpher Al-Cr-Schichten

Stiehler, Martin 13 December 2004 (has links)
Thin amorphous films of binary aluminum-chromium alloys have been produced by flash evaporation and characterized by means of electron diffraction and measurements of transport properties. Beside the known effect of hybridization on the phase stability an additional structure forming mechanism could be identified in the aluminum-chromium alloys and other amorphous binary aluminum-transition-metal alloys as well. A systematical influence of the transition-metal-d-electrons on the plasma resonance energies was found. / Es wurden amorphe Schichten von binären Aluminium-Chrom-Legierungen mit Hilfe abschreckender Kondensation aus der Gasphase hergestellt und einer elektronischen und strukturellen Charakterisierung unterzogen. Neben dem bereits bekannten Einfluss von Hybridisierungsmechanismen auf die Strukturbildung und Stabilität der amorphen Aluminium-Übergangsmetall-Legierungen, konnte ein weiterer Ordnungsmechanismus bei hohen Chrom-Anteilen gefunden werden. Im Vergleich mit anderen, bereits früher untersuchten, binären amorphen Aluminium-Übergangsmetall-Lergierungen, konnte gezeigt werden, dass dieses Verhalten auch dort auftritt. Desweiteren konnte eine Systematik im Einfluss der Übergangsmetall-d-Elektronen auf die Plasmaresonanz der Aluminium-Übergangsmetall-Legierungen gefunden werden.
90

Tectonics of an intracontinental exhumation channel in the Erzgebirge, Central Europe

Hallas, Peter 28 August 2020 (has links)
The late Variscan rapid extrusion of ultra-high pressure metamorphic rocks into a preexisting nappe stack is the striking feature of the Erzgebirge, N-Bohemian Massif. Complex deformation increments, the large scatter of orientation and geometry of the finite strain ellipsoid as well as partly inverted metamorphic and age profiles are controversially discussed. Structural analysis and geothermobarometry show that deeply buried continental crust emplaced under transpression with horizontal σ1 (NNW-SSE) and σ3 stress axes. Thereby, west-directed lateral escape of isothermally exhumed high-pressure units led to the formation of an exhumation channel. The pervasive fabric of quartz-feldspar rocks formed between 400–650 °C. Based on Ar-Ar geochronology, the deformation in the exhumation channel is framed between 340 and 335 Ma. This preliminary results allow a modern texture analysis of natural shear zones, i.e. electron back scattering and neutron diffraction of quartz from shear zones of the exhumation channel. Because of an extensive and complex dataset, the crystallographic orientation of quartz is statistically analysed. I applied multidimensional scaling of the error between orientation density functions to visualize quartz textures together with additional microstructural features. I show that the temporal coexistence of two crystallographic orientation endmembers is the exclusive result of varying strain rates and differential stress. This thesis combines for the first time crystallographic textures of the Erzgebirge with modern plate tectonic concepts of the European Variscan orogeny.:Table of contents PREFACE Channel exhumation models in collisional Orogens Texture evolution of quartz in orogenic shear zones The structure of the thesis PART 1: THE EXHUMATION CHANNEL OF THE ERZGEBIRGE: GEOLOGICAL CONSTRAINS 1 Introduction 2 Geological Setting 2.1 The Variscan orogeny 2.2 The Saxo-Thuringian Zone as part of the European Variscides 2.3 Tectonics – constraints for an exhumation channel (<340 Ma) 3 Methods and Data processing 3.1 Field work, sample collection and selection 3.2 Geochemistry 3.3 MLA 3.4 EMP analyses and pressure-temperature estimations 3.5 Ar-Ar dating 3.6 Ar-Ar data handling and statistical treatment 4 Results 4.1 Geochemistry and Mineral Content of the Channel Rocks 4.2 Tectonics of the exhumation channel 4.2.1 Mica schists – roof of the channel 4.2.2 Paragneisses and Orthogneiss (type 1) 4.2.3 Orthogneiss (mgn) 4.2.4 Orthogneiss (type 2) – footwall of the channel 4.3 Petrology and Mineral chemistry 4.3.1 Garnet 4.3.2 Plagioclase 4.3.3 White mica 4.3.4 Biotite 4.4 Geothermobarometry 4.5 40Ar/39Ar – geochronology 4.5.1 Step heating 4.5.2 Single grain fusion 4.5.3 Ar-Ar and mineral chemistry 4.5.4 Ar-Ar and structural geology 5 The tectonometamorphic evolution of the exhumation channel 5.1 Local change in finite strain ellipsoid orientation 5.2 Evidence for advective heat transfer during exhumation 5.3 Position of the gneiss complex Reitzenhain-Catherine 5.4 Do Ar-Ar ages of the Erzgebirge represent cooling or recrystallization? 6 The channel model 6.1 Pre-channel stage – subduction 6.2 Channel stage – lateral extrusion 6.3 Post-channel stage – extensional doming 7 The Constrains for Texture analyses in a channel-type exhumation shear zone PART 2: QUARTZ TEXTURE AND MICROSTRUCTURAL EVOLUTION IN A CHANNEL-TYPE EXHUMATION SHEAR ZONE 1 Introduction 2 State of the Art 2.1 Dynamic recrystallization mechanism in quartz. 2.2 Texture evolution from natural and experimental deformed quartz 2.3 Quartz c-axis and textures in the Erzgebirge 3 Sample description 3.1 Mineral content 3.2 Quartz microstructures 3.2.1 Type 1 – Predominance of GBM 3.2.2 Type 2 – GBM overprints SGR 3.2.3 Type 3 – Equal ratio of GBM and SGR 3.2.4 Type 4 – Predominance of SGR 4 Methods 4.1 Time of Flight data processing and analysis 4.2 EBSD data processing and analysis 4.3 Multidimensional scaling 5 Results 5.1 Pole figure geometry 5.2 Multidimensional scaling 5.3 Texture properties and recrystallization 5.4 Grain and sample properties 5.5 Intragranular misorientation 5.6 Subgrain misorientation axes, slip systems and Schmid factor 6 Discussion 6.1 The dependence of quartz content and distribution and the particular CPO 6.2 The context between grain sizes, shape preferred orientation (SPO) and crystal preferred orientation (CPO) 6.3 Active slip systems during ductile quartz deformation 6.4 Recrystallization mechanism and texture 7 Conclusions GENERAL CONCLUSIONS REFERENCES APPENDIX A Isochemistry during metamorphism B Confidentiality of the PT estimations C Discrepancy of WPA and WMA D Appendix Figures E Appendix Tables

Page generated in 0.0976 seconds