• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 107
  • 42
  • 29
  • 18
  • 7
  • 6
  • 5
  • 4
  • 4
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 254
  • 134
  • 57
  • 54
  • 53
  • 51
  • 50
  • 46
  • 46
  • 45
  • 42
  • 41
  • 35
  • 29
  • 27
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

FPGA Implementation of Low Density Party Check Codes Decoder

Vijayakumar, Suresh 08 1900 (has links)
Reliable communication over the noisy channel has become one of the major concerns in the field of digital wireless communications. The low density parity check codes (LDPC) has gained lot of attention recently because of their excellent error-correcting capacity. It was first proposed by Robert G. Gallager in 1960. LDPC codes belong to the class of linear block codes. Near capacity performance is achievable on a large collection of data transmission and storage.In my thesis I have focused on hardware implementation of (3, 6) - regular LDPC codes. A fully parallel decoder will require too high complexity of hardware realization. Partly parallel decoder has the advantage of effective compromise between decoding throughput and high hardware complexity. The decoding of the codeword follows the belief propagation alias probability propagation algorithm in log domain. A 9216 bit, (3, 6) regular LDPC code with code rate ½ was implemented on FPGA targeting Xilinx Virtex 4 XC4VLX80 device with package FF1148. This decoder achieves a maximum throughput of 82 Mbps. The entire model was designed in VHDL in the Xilinx ISE 9.2 environment.
152

Simulace RF přenosového kanálu pro DVB-T2 / Simulation of the RF transmission channel for the DVB-T2

Strouhal, Adam January 2011 (has links)
This Master thesis is focused on detailed description of the DVB-T2 system. This work deals with the description of the particular parts of models and with typical RF transmission channels for fixed and mobile reception. In order to simulate the impact of the fading transmission channels on the transmitted signal there was developed an appropriate application in MATLAB. The graphic user interface of this application allows set the transmission parameters of DVB-T2 and the parameters of the transmission channels. Results of simulations with various settings are evaluated and compared with the results, obtained from the DVB-T measurements.
153

Simulace přenosu DVB-S2 / Simulation of the DVB-S2 Transmission

Klíma, Jindřich January 2011 (has links)
This thesis is focusing on the second satellite digital TV standard, DVB-S2. It deals with the principle of the digital TV and the first standard DVB-S. It also describes the very beginning and characteristics of the DVB-S2, new technologies in use, architecture and the individual topics are then explained more in detail. The thesis also contains the program of transmission simulation of DVB-S2 in MATLAB. In the laboratory of television technology UREL, two standards were measured and compared with the values obtained from the program. The functionality of the program and the benefits of DVB-S2 were verified afterwards.
154

FSO vysílač/přijímač pro měření kvality spoje / FSO transceiver for link quality estimation

Novák, Marek January 2016 (has links)
Tato diplomová práce pojednává o zmírnění bitové chybovosti bezkabelového optického spoje s užitím principu reciprocity aplikovaného na komunikační kanál, spolu s možností kódování přenášených dat. V této práci je implementováno LDPC a Reed-Solomonovo kódování pro jejich vyhovující vlastnosti. Zbytková rámcová chybovost je vypočtena a k dispozici jako výstup systému, který je implementovaný v hradlovém poli (FPGA).
155

Applications Of Ldpc Codes For Hybrid Wireless Optical And Magnetic Recording Systems

Vangala, Sarma V 01 January 2007 (has links) (PDF)
This thesis comprises of two parts. In the first, we improve the performance of existing hybrid FSO/RF communication systems. Conventional hybrid RF and optical wireless communication systems make use of independent and parallel Free Space Optical (FSO) and RF channels to achieve higher reliability than individual channels. This thesis is based on the idea that true hybridization can be accomplished only when both channels collaboratively compensate the shortcomings of each other and thereby, improve the performance of the system as a whole. We believe that optimization on the combined channel capacities instead of the individual channel capacities of the FSO and RF channels can increase the system availability by a large amount. Using analysis and simulation, we show that, by using Hybrid Channel Codes, we can obtain more than two orders of magnitude improvement in bit error rates and many-fold increase in system availability over the currently existing best systems. Simulations also show that the average throughput obtained using the new system is over 35% better when compared to the present systems. The goodput is much higher because of the elimination of data repetition. Also by avoiding data duplication, we preserve to a great extent the crucial security benefits of FSO communications. The second half of the thesis deals with magnetic recording systems. Due to the insatiable and ever-increasing needs of data storage, novel techniques have to be developed to improve the capacity of magnetic recording channels. These capacity requirements translate to improving storage densities and using higher recording rates. For these channels, improvements even in the order of a tenths of a dB have a big impact on the storage densities of the recording device. Recently, LDPC codes have been constructed to achieve the independent and uniformly distributed (i.u.d.) capacity of partial response (PR) channels. The “guess algorithm” has been proposed for memoryless channels, to improve the performance of iterative belief propagation decoding to that of Maximum Likelihood (ML) decoding. In the second part of this thesis, the “guess algorithm” is extended to channels with memory. It is shown using asymptotic density evolution analysis that the gains obtained using this algorithm on these channels are more than those obtained over memoryless channels. The “guess algorithm” is further extended to magnetic recording channels which are characterized by ISI and additive white gaussian noise (AWGN). Simulations show that gains of upto one dB are possible on magnetic recording channels.
156

Simulation Study Of A Gpram System: Error Control Coding And Connectionism

Schultz, Steven E 01 January 2012 (has links)
A new computing platform, the General Purpose Reprsentation and Association Machine is studied and simulated. GPRAM machines use vague measurements to do a quick and rough assessment on a task; then use approximated message-passing algorithms to improve assessment; and finally selects ways closer to a solution, eventually solving it. We illustrate concepts and structures using simple examples.
157

Advanced Coding And Modulation For Ultra-wideband And Impulsive Noises

Yang, Libo 01 January 2007 (has links)
The ever-growing demand for higher quality and faster multimedia content delivery over short distances in home environments drives the quest for higher data rates in wireless personal area networks (WPANs). One of the candidate IEEE 802.15.3a WPAN proposals support data rates up to 480 Mbps by using punctured convolutional codes with quadrature phase shift keying (QPSK) modulation for a multi-band orthogonal frequency-division multiplexing (MB-OFDM) system over ultra wideband (UWB) channels. In the first part of this dissertation, we combine more powerful near-Shannon-limit turbo codes with bandwidth efficient trellis coded modulation, i.e., turbo trellis coded modulation (TTCM), to further improve the data rates up to 1.2 Gbps. A modified iterative decoder for this TTCM coded MB-OFDM system is proposed and its bit error rate performance under various impulsive noises over both Gaussian and UWB channel is extensively investigated, especially in mismatched scenarios. A robust decoder which is immune to noise mismatch is provided based on comparison of impulsive noises in time domain and frequency domain. The accurate estimation of the dynamic noise model could be very difficult or impossible at the receiver, thus a significant performance degradation may occur due to noise mismatch. In the second part of this dissertation, we prove that the minimax decoder in \cite, which instead of minimizing the average bit error probability aims at minimizing the worst bit error probability, is optimal and robust to certain noise model with unknown prior probabilities in two and higher dimensions. Besides turbo codes, another kind of error correcting codes which approach the Shannon capacity is low-density parity-check (LDPC) codes. In the last part of this dissertation, we extend the density evolution method for sum-product decoding using mismatched noises. We will prove that as long as the true noise type and the estimated noise type used in the decoder are both binary-input memoryless output symmetric channels, the output from mismatched log-likelihood ratio (LLR) computation is also symmetric. We will show the Shannon capacity can be evaluated for mismatched LLR computation and it can be reduced if the mismatched LLR computation is not an one-to-one mapping function. We will derive the Shannon capacity, threshold and stable condition of LDPC codes for mismatched BIAWGN and BIL noise types. The results show that the noise variance estimation errors will not affect the Shannon capacity and stable condition, but the errors do reduce the threshold. The mismatch in noise type will only reduce Shannon capacity when LLR computation is based on BIL.
158

The Applicability of Joint Source-Channel Coding Systems to Aeronautical Mobile Telemetry Data

Richmond, Jesse 01 December 2022 (has links)
Broadcast spectrum restrictions require greater efficiency from wireless transmission systems, particularly in applications where sections of spectrum previously reserved for military purposes have been sold to private interests. A joint source-channel coding system, in tandem with smart data selection techniques, is proposed as a potential solution to this problem. The workings of this joint source-channel coding system are detailed, with particular attention given to the decoding process.
159

An Area-Efficient Architecture for the Implementation of LDPC Decoder

Yang, Lan 25 April 2011 (has links)
No description available.
160

Studies on Lowering the Error Floors of Finite Length LDPC codes

Li, Huanlin 26 July 2011 (has links)
No description available.

Page generated in 0.0156 seconds