21 |
Uso integrado das ferramentas de análise do ciclo de vida e de análise do custo do ciclo de vida em pavimentação. / Integrated use of life cycle analyses and the cycle cost analyses tools in paving.Souza, Luciana de Paula 22 September 2017 (has links)
A sustentabilidade pode ser uma realidade para a concepção e construção de uma rodovia, especialmente quanto ao pavimento. Dentro deste contexto, a análise do ciclo de vida - LCA (Life Cycle Analysis) e a análise do custo do ciclo de vida - LCCA (Life Cycle Cost Analysis) dos pavimentos são formas de prover meios para avaliar aspectos relativos à sustentabilidade de uma solução de pavimentação, seja no setor ambiental ou econômico. Na pesquisa apresentada, essas ferramentas são utilizadas para identificar os compromissos em tomada de decisão, uma vez que permitem a apreciação de indicadores de sustentabilidade e viabilidade de investimento, a partir do momento da produção das matérias-primas, até implantação do pavimento, manutenção, conservação e uso da rodovia. Portanto, nessa pesquisa foram avaliadas e comparadas três estruturas típicas de pavimento (flexível, semi-rígido e rígido) propostas para uma rodovia que se encontra em fase de implantação. Após verificação e comparação dos dados obtidos foi feita a integração desses resultados sob âmbito de sustentabilidade e viabilidade de implementação, através do método multicritério AHP (Analytic Hierarchy Process). Tal integração permitiu uma avaliação analítica de indicadores, por meio da verificação das emissões de CO2 equivalentes, e também através da constatação do VPL (valor presente líquido) para cada alternativa considerada. De maneira geral, sob as condições estabelecidas nesta pesquisa, os resultados permitiram observar, por exemplo, qual estrutura levaria a uma maior liberação de CO2 na atmosfera e qual pavimento apresentaria viabilidade de investimento menos atrativa, o que poderia auxiliar na tomada de decisão quanto à estrutura a ser adotada naquele projeto. / Sustainability can be a reality for the design and construction of a highway, especially considering the pavement. Within this context, Life Cycle Analysis (LCA) and Life Cycle Cost Analysis (LCCA) of pavements may provide means to evaluate aspects related to the sustainability of a solution, both in the environmental or economic sectors. In the presented research, these tools are used to identify the commitments in decision making, since they allow the evaluation of sustainability indicators and feasibility of investment, since production of raw materials, until the pavement construction, maintenance, conservation and highway operation. Therefore, in this research, three typical pavement structures (flexible, semi-rigid and rigid) were proposed and compared (undergoing project). After verification and comparison of the obtained data, the integration of LCA and LCCA under sustainability and feasibility aspects was done through the AHP (Analytic Hierarchy Process) multi-criteria method. This integration allowed an analytical evaluation of indicators, through the verification of the equivalent CO2 emissions, and also through the verification of the NPV (net present value) for each alternative considered. In general, under the conditions established in this research, the results showed, for example, which structure would lead to a higher release of CO2 into the atmosphere and which pavement would present less attractive investment feasibility, which could help in decision making of which pavement structure could be adopted in that project.
|
22 |
An Investigation into Reliability Based Methods to Include Risk of Failure in Life Cycle Cost Analysis of Reinforced Concrete Bridge RehabilitationZhu, Weiqi, ycqq929@gmail.com January 2008 (has links)
Reliability based life cycle cost analysis is becoming an important consideration for decision-making in relation to bridge design, maintenance and rehabilitation. An optimal solution should ensure reliability during service life while minimizing the life cycle cost. Risk of failure is an important component in whole of life cycle cost for both new and existing structures. Research work presented here aimed to develop a methodology for evaluation of the risk of failure of reinforced concrete bridges to assist in decision making on rehabilitation. Methodology proposed here combines fault tree analysis and probabilistic time-dependent reliability analysis to achieve qualitative and quantitative assessment of the risk of failure. Various uncertainties are considered including the degradation of resistance due to initiation of a particular distress mechanism, increasing load effects, changes in resistance as a result of rehabilitation, environmental variables, material properties and model errors. It was shown that the proposed methodology has the ability to provide users two alternative approaches for qualitative or quantitative assessment of the risk of failure depending on availability of detailed data. This work will assist the managers of bridge infrastructures in making decisions in relation to optimization of rehabilitation options for aging bridges.
|
23 |
Life Cycle Costing in the evaluation process of new production lines / Livscykelkostnad i utvecklingsprocessen av nya produktionslinorLudvigsson, Rebecka January 2010 (has links)
<p>The purpose of this thesis is to develop a Life Cycle Cost model that could be used for investment, budgeting and comparing alternatives. An evaluation of existing models concluded that there was a need for a model that was easy to use and understand but in the same way economical and technical complex. Theoretical and empirical information was gathered in accordance with the purpose and made a base of the model. The model highlights operative, energy and maintenance costs. A case study to test the model has been carried out and selected company for this has been Swedwood International AB which is a part of IKEA. Swedwood currently works with pay back calculations which could lead to wrong decisions during the life length of the investment. The developed LCC model was tested on different techniques for applying an edge on a substrate. The result of the report is that the user will have a clear and structured overview of an investment during its economical life length. A final investment decision demands further tests and evaluations, for example technical test and MCDM. Further researches for the LCC model could be to investigate if the model lacks any critical aspects that should be included. A recommendation for Swedwood is to follow up the developed standards for collecting data at the factories in order to facilitate when investigating for new techniques and comparing between investment options.</p> / <p>Syftet med examensarbetet är att utveckla en livscykelkostnadsmodell som kan användas vid investeringar, budgeteringar och jämförelser. Efter en utvärdering av tillgängliga modeller konstaterades det att behov fanns för en modell som var ekonomisk och teknisk avancerad men ändå användarvänlig. Teori och empiri insamlades i enlighet med syftet och bildade en grund för modellen. Modellen belyser speciellt kostnadsaktiviteter så som operativa, energi och underhållskostnader. En fallstudie för att testa modellen har genomförts och fallföretaget var Swedwood International AB som är en del av IKEA. Swedwood arbetar nu med payback kalkyler vilket kan leda till fel beslut sett till hela investeringens livslängd. Den framtagna LCC modellen testades på olika tekniker för att applicera en kant på ett arbetstycke. Resultatet av rapporten är genom att använda modellen får man en klar och tydlig översikt av alla kostnader under en investerings ekonomiska livslängd. Ett investeringsbeslut kräver ytterligare tester och utvärderingar så som tekniska tester och MCDM. En fortsatt utveckling av modellen kan vara att undersöka om den saknar någon kritisk del som ska var inkluderad. En rekommendation till Swedwood är att följa upp de centralt utvecklade standarder på fabrikerna så att alla samlar in data på samma sätt, vilket skulle underlätta vid implementering av nya tekniker och vid jämförelser av investeringar.</p>
|
24 |
Industrial cleaning with Qlean Water : a case study of printed circuit boardsLindahl, Mattias, Svensson, Niclas, Svensson, Bo, Sundin, Erik January 2013 (has links)
Many manufacturing companies are looking for ways to substitute environmentally problematic cleaning methods for surface treatments with more environmentally friendly ones. In this paper, one potential solution is described. The Qlean method, based on cleaning with highly pure water (in this paper defined as Qlean Water), is a novel cleaning method. This method, now utilized at one plant at a leading major international electronic company, has substituted previous chemical-based methods for cleaning printed circuit boards prior to lacquering. This paper presents, based on that company's primary data, a comparative study using environmental analysis and economic life cycle cost review between cleaning with Qlean Water and conventional cleaning. The focus is on the environmental and economic performance of the two alternatives. The conclusion is that Qlean Water offers both a significant economic and environmental cost reduction and a better product. This is the case even though all identified economic benefits derived from using Qlean Water, e.g. that the quality and technical lifetime have been extended for the printed circuit boards with the Qlean Water cleaning method, are not considered in the economic analysis.
|
25 |
Instrumentation and Overall Evaluation of Perpetual and Conventional Flexible Pavement DesignsEl-Hakim, Mohab January 2009 (has links)
The perpetual structural pavement design is currently being explored for usage in Canada and worldwide. This thick structural design can provide many potential benefits but it also has associated costs. Cold Canadian winters and warm summers impact pavement performance and make pavement design challenging. This is further complicated by a heavy dependence on trucks to transport imports and exports. Consequently, most Canadian roads are subjected to rapid deterioration due to high fatigue stresses and rapid growth of the traffic loads.
The concept of a perpetual pavement design was raised to overcome the limitation of structural capacity of the conventional pavement designs. The concept of perpetual pavement was explained and introduced in this thesis and the benefits behind the perpetual pavement construction were studied.
The Ministry of Transportation of Ontario (MTO) and the Centre for Pavement and Transportation Technology (CPATT) joined their efforts in partnership with Natural Sciences and Engineering Research Council (NSERC), Ontario Hot Mix Producers Association (OHMPA), Stantec Consultant, McAsphalt and others to construct three test sections on the Highway 401. The goal was to monitor and evaluate the performance of three different pavement structural designs. Performance evaluation of test section was performed by evaluating the expected ability of pavement section to withstand the traffic loads and climate impact throughout the design life of that pavement section with minimum damage. The minimum damage is expressed as low vertical pressure on top of subgrade, low shear stresses in the surface course and low tensile strain at the bottom of asphalt layers. Perpetual pavement design with Rich Bottom Mix (RBM) layer, perpetual pavement design without RBM and a conventional pavement design were constructed and instrumented with various types of sensors. These are capable of monitoring the tensile strain in asphalt layers, vertical pressure on the subgrade surface, moisture in the subgrade material and the temperature profile in the pavement sections. The test section construction, sensor installation and preliminary modeling are all part of this thesis.
Preliminary structural evaluation was performed by analyzing the three designs using a Mechanistic Empirical Pavement Design Guide (MEPDG) model representing the three pavement designs constructed on the Highway 401. In addition, the WESLEA for Windows software was used to validate the long life performance of the perpetual pavement design. Life Cycle Cost Analysis (LCCA) was also performed for the perpetual and conventional pavement designs to evaluate the cost benefits associated with pavement designs for 70 year analysis period.
In addition, the perpetual Pavement design philosophy for moderate and low traffic volume roads was also examined in this research. This pavement design involved creating a complete comparison and validation of the benefits of using perpetual asphalt pavements versus the conventional pavements in all road types and traffic categories. Structural evaluation of the pavement sections in moderate and low traffic volume roads was performed. In addition, LCCA was implemented to validate the perpetual and conventional structural pavement designs in moderate and low traffic volume roads.
|
26 |
Optimal väggisoleringstjocklek på hyresfastighet vid begränsad byggyta / Optimum of wall insulation in an apartment building for renting, built on a limited areaPerman, Daniel January 2011 (has links)
Miljömedvetenheten och ökat intresse för energieffektiva hus har gjort att byggnader isoleras som aldrig förr. Oftast är det på lång sikt ganska så lätt att räkna hem en ökad isoleringsmängd och det är just den ekonomiska vinsten som brukar lyftas fram som det främsta argument varför en beställare bör välja den tjockare isoleringen. För en beställare av hyresfastigheter är det oftast ekonomin som avgör ifall ett projekt ska påbörjas eller inte och denna studie ska därför vara en hjälp till att välja den mest ekonomiska isoleringstjockleken i väggar. Syftet med denna studie är att utreda var den optimala väggisoleringstjocken hamnar på en hyresfastighet med flerfamiljsbostäder som byggs på en begränsad byggyta. Inte sällan finns det krav på maximal byggyta från kommunen och då innebär det att ju tjockare isoleringen är desto mindre blir den uthyrningsbara boytan. Kvalitativa intervjuer låg till grund för att bestämma några vanligt förekommande ytterväggskonstruktioner som isoleringen sedan skulle optimeras på. Dessa ytterväggar placerades på en teoretisk referensbyggnad som därefter energiberäknades med hjälp av handberäkningar där matematiska uttryck för en varierande isoleringstjocklek användes. De teoretiska ytterväggarna kalkylerades därefter med hjälp av kalkylprogrammet Sektionsdata. En livscykelkostnadsanalys utfördes sedan där historisk statistik på hyror, energipriser och räntor utnyttjades. Slutligen kunde en optimal isoleringstjocklek hittas för varje väggtyp. Väggkonstruktionerna som valts var två betongväggar och två träregelväggar, båda med puts respektive tegel. Optimal isoleringstjocklek för väggkonstruktionen betongstomme med tegel hamnade på 84mm. För väggkonstruktionen betongstomme med puts hamnade optimal isoleringstjocklek på 88mm. För väggkonstruktionerna med trästomme kunde en optimal isoleringstjocklek inte hittas eftersom väggarnas uppbyggnad med två respektive tre isoleringsskikt gjorde att väggarna förblev överisolerade i ett ekonomiskt perspektiv även vid minsta möjliga tjocklek på isoleringsskiktet som skulle optimeras. Studien visar på att det med dagens byggregler ger en stor vinst att hålla nere på väggisoleringstjockleken på flerfamiljsbostäder som byggs på en begränsad byggyta. / Environmental awareness and increased interest in energy-efficient housing have made the buildings more insulated in Sweden. Usually, it is quite easy to calculate a profit from a greater amount of insulation, in the long term. This is usually the seller’s main argument to why the client should choose the thicker insulation. For a client that wants to build a rental property, it is usually the economy that determines whether a project should be started or not. Hopefully this study will be a help to choose the most economic insulation thickness in walls. The purpose of this study is to investigate where the optimum of wall insulation thickness is in an apartment building for renting which is built on a limited area. Quite often there are requirements for a maximum building area from the municipality, which means that the rentable living space will come smaller when the insulation gets thicker. Qualitative interviews were used to determinate the common wall constructions which the insulation would be optimized for. These walls were placed in a theoretical reference building in which the energy use were estimated using hand calculations where mathematical expressions of a variety of insulation thickness were used. Thereafter, the prices of the walls were calculated using a spreadsheet program called Sektionsdata. A life cycle cost analysis was performed in which the historical statistics on rents, energy prices and interest rates were used. Finally, the optimal insulation thickness was found for each wall type. The wall types chosen were a wall of concrete and brick, a wall of concrete and rendering, a wall of wood and brick and a wall of wood and rendering. Optimal insulation thickness of the wall with concrete and brick ended up at 84mm. For the wall of rendered concrete, the optimal insulation thickness ended up at 88mm. The optimal insulation thickness of the walls of wood could not be found as the wall structure with two and three insulation layers made the walls too isolated in an economic perspective even at a minimal thickness of the layer that was going to be optimized. The study shows that with current building codes in Sweden it is profitable to keep down the wall insulation thickness in an apartment building for renting, built on a limited area.
|
27 |
Instrumentation and Overall Evaluation of Perpetual and Conventional Flexible Pavement DesignsEl-Hakim, Mohab January 2009 (has links)
The perpetual structural pavement design is currently being explored for usage in Canada and worldwide. This thick structural design can provide many potential benefits but it also has associated costs. Cold Canadian winters and warm summers impact pavement performance and make pavement design challenging. This is further complicated by a heavy dependence on trucks to transport imports and exports. Consequently, most Canadian roads are subjected to rapid deterioration due to high fatigue stresses and rapid growth of the traffic loads.
The concept of a perpetual pavement design was raised to overcome the limitation of structural capacity of the conventional pavement designs. The concept of perpetual pavement was explained and introduced in this thesis and the benefits behind the perpetual pavement construction were studied.
The Ministry of Transportation of Ontario (MTO) and the Centre for Pavement and Transportation Technology (CPATT) joined their efforts in partnership with Natural Sciences and Engineering Research Council (NSERC), Ontario Hot Mix Producers Association (OHMPA), Stantec Consultant, McAsphalt and others to construct three test sections on the Highway 401. The goal was to monitor and evaluate the performance of three different pavement structural designs. Performance evaluation of test section was performed by evaluating the expected ability of pavement section to withstand the traffic loads and climate impact throughout the design life of that pavement section with minimum damage. The minimum damage is expressed as low vertical pressure on top of subgrade, low shear stresses in the surface course and low tensile strain at the bottom of asphalt layers. Perpetual pavement design with Rich Bottom Mix (RBM) layer, perpetual pavement design without RBM and a conventional pavement design were constructed and instrumented with various types of sensors. These are capable of monitoring the tensile strain in asphalt layers, vertical pressure on the subgrade surface, moisture in the subgrade material and the temperature profile in the pavement sections. The test section construction, sensor installation and preliminary modeling are all part of this thesis.
Preliminary structural evaluation was performed by analyzing the three designs using a Mechanistic Empirical Pavement Design Guide (MEPDG) model representing the three pavement designs constructed on the Highway 401. In addition, the WESLEA for Windows software was used to validate the long life performance of the perpetual pavement design. Life Cycle Cost Analysis (LCCA) was also performed for the perpetual and conventional pavement designs to evaluate the cost benefits associated with pavement designs for 70 year analysis period.
In addition, the perpetual Pavement design philosophy for moderate and low traffic volume roads was also examined in this research. This pavement design involved creating a complete comparison and validation of the benefits of using perpetual asphalt pavements versus the conventional pavements in all road types and traffic categories. Structural evaluation of the pavement sections in moderate and low traffic volume roads was performed. In addition, LCCA was implemented to validate the perpetual and conventional structural pavement designs in moderate and low traffic volume roads.
|
28 |
Life-cycle cost analysis and probabilistic cost estimating in engineering design using an air duct design case studyAsiedu, Yaw 01 January 2000 (has links)
Although the issue of uncertainties in cost model parameters has been recognized as an important aspect of life-cycle cost analysis, it is often ignored or not well treated in cost estimating. A simulation approach employing kernel estimation techniques and their asymptotic properties in the development of the probability distribution functions (PDFs) of cost estimates is proposed. This eliminates the guess work inherent in current simulation based cost estimating procedures, reduces the amount of data sampled and makes it easier to specify the accuracy desired in the estimated distribution. Building energy costs can be reduced considerably if air duct systems are designed for the least life-cycle cost. The IPS-Method, a simple approach to HVAC air duct design is suggested. The Diameter and Enhanced Friction Charts are also developed. These are charts that implicitly incorporate the LCC and are better than the existing Friction Chart for the selection of duct sizes. Through illustrative examples, the ease and effectiveness of these are demonstrated. For more complex designs, a Segregated Genetic Algorithm (SGA) is recommend. A sample problem with variable time-of-day operating conditions and utility rates is used to illustrate its capabilities. The results are compared to those obtained using weighted average flow rates and utility rates to show the life-cycle cost savings possible by using this approach. Although life-cycle cost savings may be only between 0.4% and 8.3% for some simple designs, much larger savings may occur with more complex designs and operating constraints. The SGA is combined with probabilistic cost estimating to optimize HVAC air duct systems with uncertainties in the model parameters. The designs based on the SGA method tended to be less sensitive to typical variations in the component physical parameters and, therefore, are expected to result in lower balancing and operating costs.
|
29 |
Life Cycle Costing in the evaluation process of new production lines / Livscykelkostnad i utvecklingsprocessen av nya produktionslinorLudvigsson, Rebecka January 2010 (has links)
The purpose of this thesis is to develop a Life Cycle Cost model that could be used for investment, budgeting and comparing alternatives. An evaluation of existing models concluded that there was a need for a model that was easy to use and understand but in the same way economical and technical complex. Theoretical and empirical information was gathered in accordance with the purpose and made a base of the model. The model highlights operative, energy and maintenance costs. A case study to test the model has been carried out and selected company for this has been Swedwood International AB which is a part of IKEA. Swedwood currently works with pay back calculations which could lead to wrong decisions during the life length of the investment. The developed LCC model was tested on different techniques for applying an edge on a substrate. The result of the report is that the user will have a clear and structured overview of an investment during its economical life length. A final investment decision demands further tests and evaluations, for example technical test and MCDM. Further researches for the LCC model could be to investigate if the model lacks any critical aspects that should be included. A recommendation for Swedwood is to follow up the developed standards for collecting data at the factories in order to facilitate when investigating for new techniques and comparing between investment options. / Syftet med examensarbetet är att utveckla en livscykelkostnadsmodell som kan användas vid investeringar, budgeteringar och jämförelser. Efter en utvärdering av tillgängliga modeller konstaterades det att behov fanns för en modell som var ekonomisk och teknisk avancerad men ändå användarvänlig. Teori och empiri insamlades i enlighet med syftet och bildade en grund för modellen. Modellen belyser speciellt kostnadsaktiviteter så som operativa, energi och underhållskostnader. En fallstudie för att testa modellen har genomförts och fallföretaget var Swedwood International AB som är en del av IKEA. Swedwood arbetar nu med payback kalkyler vilket kan leda till fel beslut sett till hela investeringens livslängd. Den framtagna LCC modellen testades på olika tekniker för att applicera en kant på ett arbetstycke. Resultatet av rapporten är genom att använda modellen får man en klar och tydlig översikt av alla kostnader under en investerings ekonomiska livslängd. Ett investeringsbeslut kräver ytterligare tester och utvärderingar så som tekniska tester och MCDM. En fortsatt utveckling av modellen kan vara att undersöka om den saknar någon kritisk del som ska var inkluderad. En rekommendation till Swedwood är att följa upp de centralt utvecklade standarder på fabrikerna så att alla samlar in data på samma sätt, vilket skulle underlätta vid implementering av nya tekniker och vid jämförelser av investeringar.
|
30 |
Effect of cumulative seismic damage and corrosion on life-cycle cost of reinforced concrete bridgesKumar, Ramesh 15 May 2009 (has links)
Bridge design should take into account not only safety and functionality, but also the
cost effectiveness of investments throughout a bridge life-cycle. This work presents a
probabilistic approach to compute the life-cycle cost (LCC) of corroding reinforced
concrete (RC) bridges in earthquake prone regions. The approach is developed by
combining cumulative seismic damage and damage associated to corrosion due to
environmental conditions. Cumulative seismic damage is obtained from a low-cycle
fatigue analysis. Chloride-induced corrosion of steel reinforcement is computed based
on Fick’s second law of diffusion.
The proposed methodology accounts for the uncertainties in the ground motion
parameters, the distance from source, the seismic demand on the bridge, and the
corrosion initiation time. The statistics of the accumulated damage and the cost of
repairs throughout the bridge life-cycle are obtained by Monte-Carlo simulation. As an
illustration of the proposed approach, the effect of design parameters on the life-cycle
cost of an example RC bridge is studied. The results are shown to be valuable in better
estimating the condition of existing bridges (i.e., total accumulated damage at any given
time) and, therefore, can help schedule inspection and maintenance programs. In addition, by taking into consideration the deterioration process over a bridge life-cycle, it
is possible to make an estimate of the optimum design parameters by minimizing, for
example, the expected cost throughout the life of the structure.
|
Page generated in 0.0314 seconds