• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1157
  • 360
  • 207
  • 184
  • 130
  • 49
  • 44
  • 41
  • 38
  • 38
  • 21
  • 16
  • 13
  • 10
  • 8
  • Tagged with
  • 2653
  • 2653
  • 1008
  • 562
  • 544
  • 467
  • 440
  • 363
  • 355
  • 323
  • 315
  • 311
  • 250
  • 236
  • 233
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
511

Characterizing quantity and physical dimensions of consumer electronic devices: A pilot study of Indiana households

Juliette Fernada Bermudez Camelo (12797204) 01 August 2023 (has links)
<p>To accurately estimate the potential recovery of metals from electronic devices, various tools such as mass flow analysis, dynamic models, and forecasting models have been employed. However, the reliability of the model-generated outputs hinges on the accuracy of the input data. To ensure accurate data collection, it is imperative to examine and compare different methodologies. Although surveys have conventionally been used in information and telecommunications technologies to gather consumer information, their validity is seldom contrasted with alternative methods due to the lack thereof. In response, a new mixed methodology has been developed to obtain primary consumer data through tangible information, offering new avenues for data acquisition. The methodology involves quantitative and qualitative approaches taking direct physical measurements (dimensions, weight, and quantity) of devices and including a ten question semi-structured interview to discussed consumer devices use, stock and transfer patterns, composition changes of the electronic devices, and disposal behavior. As a result, it was found new methodology measured 79% of the devices directly at laboratories and 21% of the remaining devices were self-reported by the participant. The devices on consumer stage frequently have the same type and number of components as fabric and a positive difference of about 17.99 g compared with the mass reported by fabricants or literature. The sequential steps undertaken by participants in the new methodology to acquire consumer-stage data offer distinct advantages over surveys, particularly in capturing a more comprehensive inventory of devices in storage.</p><p>Additional results indicate that the proposed methodology can provide valuable insights into the stock of electronic devices. Nevertheless, further research is required to understand the implications of surveys versus direct measurements in accurately representing mass flows during the user stage. Additionally, the relevance of external power supply or charging systems on storage will be explored as part of the supplementary findings. By improving the accuracy of metal recovery estimation and exploring more effective data collection methods, we can optimize closed-loop projects and contribute to sustainable resource management.</p>
512

Life Cycle Assessment as a decision-making tool within vaccine manufacturing – Potential and Limitations

Deklerck, Simon January 2023 (has links)
Life Cycle Assessment (LCA) is a widely used method for evaluating the environmental impacts of a product throughout its entire life cycle. As a decision-making tool, LCA allows decision-makers to identify the environmental hotspots in a product or process, and to explore opportunities for improvement. However, while LCA has many potentials, it also has several limitations that need to be considered. One of the main limitations of LCA is the difficulty in obtaining accurate data, particularly for the upstream and downstream stages of a product's life cycle. Another limitation is the challenge of interpreting the results, as LCA involves complex calculations and assumptions that can be difficult for non-experts to understand. Despite these limitations, LCA remains a valuable tool for informing decision-making, and efforts are being made to address these limitations through the development of standardized methods and improved data collection and interpretation techniques. This paper provides an overview of LCA as a decision-making tool in the context of vaccine manufacturing, its potential and limitations, and the current state of research in this field.
513

Skillnaden i koldioxidutsläpp mellan limträ och stål : En studie som jämför två olika stommaterial / A study that compares two different frame materials

Dicksen, Jesper January 2021 (has links)
Idag görs livscykelanalyser (LCA) för att identifiera de byggkomponenter somorsakar stora koldioxidutsläpp i byggbranschen.Syftet med denna studie är att med hjälp av livscykelanalysverktyget One ClickLCA jämföra hur stora koldioxidutsläpp som bildas av materialen i enlimträstomme, som tillhör en inomhusarena jämfört med materialen i en fiktivstålstomme, som är dimensionerad för att klara samma laster och funktion somlimträstommen. Detta görs i syfte att lyfta fram skillnaderna mellankoldioxidutsläppen i produktskedet (A1-A3) mellan en limträstomme och enstålstomme.En konstruktör har konstruerat stålstommen för jämförelsen. Konstruktören togfram dimensionerna och byggmaterialen, men stålstommen blev inte tillräckligtgenomarbetad och projekterad för att jämförelsen skulle kunna göras direkt.I One Click LCA behövs mängderna och byggkomponenterna för båda stommarnaför att kunna göra fullständiga livscykelanalyser. Med mängder menas volymeroch vikter för byggkomponenterna. I studien saknades från början mängder förvissa av byggkomponenterna och en del av syftet blev därför att ta fram allamängder för stommarna. För att få rätt mängder i studien användes bland annat tvåprogram, Bluebeam och Excel. Med dessa program togs längdmåtten för olikabyggkomponenter från ritningar. Tillsammans med de övriga uppgifterna ombyggkomponenterna kunde mängderna sedan tas fram.I One Click LCA behöver resurser väljas. Dessa kan vara kopplade till specifikabyggkomponenter och innehåller data om hur stora koldioxidutsläpp sombyggkomponenter orsakar. Med byggkomponenter och mängder som grund valdessedan resurser i One Click LCA. När resurser väljs räknar programmet ut hur storakoldioxidutsläpp som bildas i produktskedet (A1-A3) för byggkomponenterna.Med mängder och resurser kunde två resultat erhållas i programvaran. Resultatetvisar att 55 ton koldioxid bildas av limträstommen och 779,9 ton koldioxid bildasav stålstommen. I stålstommen är det fackverken som orsakar mestkoldioxidutsläpp och i limträstommen är balkarna i högdelen av inomhusarenansom orsakar mest koldioxidutsläpp. / Today, life-cycle assessment (LCA) are performed to identify the buildingcomponents that cause large carbon dioxide emissions in the construction industry.The purpose of this study is to use the life-cycle assessment tool One Click LCA tocompare how large carbon dioxide emissions are formed by the materials in aglulam frame, which belongs to an indoor arena compared to the materials in afictitious steel frame, which is dimensioned to withstand the same loads andfunction as the glulam frame. This is done in order to highlight the differencesbetween the carbon dioxide emissions in the product phase (A1-A3) between aglulam frame and a steel frame.A designer has designed the steel frame for comparison. The designer producedthe dimensions and building materials, but the steel frame was not sufficientlyworked out and projected for the comparison to be made directly.In One Click LCA, the quantities and building components for both frames areneeded to be able to make complete life-cycle assessment. By quantities is meantvolumes and weights for the building components. The study initially lackedquantities for some of the building components and part of the purpose wastherefore to produce all quantities for the frames. To get the right amounts in thestudy, two programs were used, Bluebeam and Excel. With these programs, thelength measurements for different building components were taken from drawings.Together with the other information about the building components, the quantitiescould then be produced.In One Click LCA, resources need to be selected. These can be linked to specificbuilding components and contain data on how large carbon dioxide emissions thatbuilding components cause. Based on building components and quantities,resources were then selected in One Click LCA. When resources are selected, theprogram calculates how large carbon dioxide emissions are formed in the productphase (A1-A3) for the building components. With quantities and resources, tworesults could be obtained in the software. The results show that 55 tonnes ofcarbon dioxide are formed by the glulam frame and 779.9 tonnes of carbon dioxideare formed by the steel frame. In the steel frame, it is the trusses that cause themost carbon dioxide emissions and in the glulam frame, the beams in the upperpart of the indoor arena cause the most carbon dioxide emissions.
514

Further study of the “GreenRoom” concept – an approach to sustainable datacenter cooling solution : Identification of improvement possibilities using Life Cycle Assessment (LCA) and discussion about the effect of the choice of Life Cycle Impact Assessment (LCIA) methods on the results

Wang, Shan January 2013 (has links)
The growing industry of Information and Communication Technology requires higher computing capacity of data centers/technical sites. The air conditioning in data centers is the key to assure a sustainable computing environment. However, the traditional cooling systems cost are responsible for large environmental footprints especially on energy consumption and greenhouse gas emissions. As a result, a green innovation of data center cooling solutions is taking place. The telecommunication company Teliasonera is developing a high density data center cooling system - the “Green Room” and has been studying the environmental performance of this system using a Life Cycle approach. As an extension of the previous study, more aspects of the project i.e. the location, life span, alternative cooling solutions, energy recovery possibilities and uncertainty analysis is explored by using Life Cycle Assessment (LCA) methodology. The comparison of the locations of the Green Room indicates that the local temperature and electricity production sources are essential factors for the environmental performance of the Green Room. The analysis of the Green Room’s life span reveals that the utilization phase may not always cause the most significant impact during the whole life cycle of the Green Room. If the life span changes, the manufacture phase may predominate the life cycle of the Green Room. The comparative result of alternative cooling technologies addresses that utilizing “natural coolant” (e.g. geo cooling) is a key for sustainable cooling innovation as it would significantly reduce the environmental footprint of the cooling system. Besides, heating a single building (partly) by the waste heat generated from the Green Room could save 30% of cumulative energy input and could reduce more than half of the total environmental impact. Additionally, results uncertainties caused by the choice of different LCIA methods are discussed in the end of the study. / The Teliasonera Green Room Concept for high and mid density of ICT equipment
515

Integrated Sustainability Assessment Framework for the U.S. Transportation

Onat, Nuri 01 January 2015 (has links)
This dissertation aims to investigate the sustainability impacts of alternative vehicle technologies and develop comprehensive sustainability assessment frameworks to analyze potential impacts of these vehicles in the U.S. In order to assess sustainability impact of vehicle alternatives, life-cycle based models has been extensively used in the literature. Although life cycle-based models are often used for environmental impacts of alternative vehicles, analysis of social and economic impacts of these vehicles has gained a tremendous interest. In this regard, there is a growing interest among the international platform and academia to use the Life Cycle Sustainability Assessment framework to have more informed sustainable products, material and technology choices by considering the environmental, as well as social and economic impacts. The Life Cycle Sustainability Assessment framework is still under development and there is an ongoing research to advance it for future applications. In this dissertation, current and future needs of sustainability assessment frameworks and the U.S. transportation are identified and addressed. The major research gaps are identified as follows: (1) there has been small emphasis on effects of spatial and temporal variations on the sustainability impacts of alternative vehicle technologies, (2) no national research efforts as of now have been directed specifically toward understanding the fundamental relationship between the adoption of electric vehicles and water demand, (3) there has been a lack of understanding the dynamic complexity of transportation sustainability, encompassing feedback mechanisms, and interdependencies, for the environmental, social, and economic impacts of alternative vehicles, and (4) there is no emphasis on addressing uncertainties inherent to the U.S. transportation and its complex relationships with the environment, society, and economy. The environmental, economic, and social impacts of alternative vehicles are highly critical for truly assessing and understanding the long-term sustainability of vehicles and propose economically viable, socially acceptable, and environmentally-friendly transportation solutions for U.S. passenger transportation. This dissertation provides a more comprehensive sustainability assessment framework by realizing following objectives: (1) inclusion of spatial and temporal variations when quantifying carbon, energy, and water footprints of alternative vehicle technologies, (2) quantifying environmental, social, and economic impacts of alternative vehicle technologies, (3) capturing the dynamic relations among the parameters of U.S. transportation system, environment, society, and the economy, (4) dealing with uncertainties inherent to the U.S. transportation sector considering the complexity of the system and dynamic relationships. The results of this dissertation reveal that the results with consideration of uncertainties, temporal and spatial variations, and dynamic complex relationships among the system variables can be significantly different than those of without consideration of those. Therefore, when developing policies the robustness of proposed scenarios should be valuated with consideration of uncertainties, temporal and spatial variations as well as the dynamic feedback mechanisms. The outcomes of this study can pave the way for advancement in the state-of-the-art and state-of-the-practice in the sustainability research by presenting novel approaches to deal with uncertainties and complex systems.
516

Thesis_Perspective and Dynamic life cycle assessment of critical materials_Tai-Yuan.pdf

Tai-Yuan Huang (13918935) 01 December 2022 (has links)
<p>Critical materials are crucial to the wide deployment of clean energy technologies and advanced technology such as electric vehicles (EVs), smartphones, high-efficiency lighting, and wind turbines. Particularly, rare earth elements (REEs) and lithium are key elements for clean energy and EVs. However, higher REEs and lithium demand for clean energy transformation, extreme supply reliance on certain area exports, and severe environmental issues during mining and processing cause uncertainty for future clean energy and transportation development. Our study aims to develop dynamic LCA with scenario analysis to simulate the future possible sustainability pathways for critical materials for stakeholders and apply life cycle assessment (LCA) to evaluate the latest REEs and lithium extraction and recycling technologies. Dynamic LCA (DLCA) integrates the temporal datasets to predict the future environmental impact of a product. The databases are mainly from Ecoinvent and Critical Materials Life Cycle Assessment Tool (CMLCAT). Python package Brightway2 and Temporalis are used to simulate the DLCA.</p> <p>The study of DLCA on the REEs industry reveals the future predictive REEs environmental impact trend, providing a clear policy strategy to reach sustainability goals for stakeholders. The results show that shifting REEs resources from China to Australia and increasing the recycling rate are key factors in reducing environmental impact in the future. Considering the degradation of rare earths ore and storage depletion in China, such as the decreased production of heavy REEs from Ion adsorption clay in southern China, exploration, and inclusion of potential REEs production projects will be the possible sustainable way in the following decade. </p> <p>LCA of RE recovery from room temperature ionic liquid (RTIL) electrochemical process helps us explore the benefits of recycling RE from the e-waste. Although RTIL contributes a higher impact on ozone depletion and global warming, close-loop recycling RTIL could reduce substantial environmental impact. Lithium recovery from geothermal brine provides the great source for fulfilling the domestic demand of the U.S. Compared to the conventional Li compounds production, this method is efficient and has 25-41% lower global warming potential. The government, researchers, and industry could benefit from this study for exploring advantage and drawback strategies for the future environmental footprint of NdFeB magnet production and identifying environmental hotspots of the latest recycling and extraction process of REEs and lithium.</p>
517

Förhållandet mellan utvecklingsnivåer, informationsutbyten och livscykel analyser i BIM baserade projekt / The relation between Level of Development, Information Exchanges, and Life Cycle Analysisin BIM-based projects

Arauz Arauz, Oliver Ariel, Gallego Marin, Kevin January 2022 (has links)
Introduction – The building industry is evolving, this urges for innovative methodologies to facilitate the construction processes including the information exchanges between these to accomplish a sustainable future. In addition, new requirements are being set by the Swedish government and other national authorities with the objective of reducing the climate impact caused by the construction industry, which is responsible for a large amount of carbon dioxide emissions. A helpful tool to estimate the total carbon dioxide emission value is the Life Cycle Analysis (LCA) which depends on the Information Exchanges (IE) and the Level of Development (LOD) in BIM (Building Information Modelling) based projects to achieve a reliable result. Therefore, this research aims to find a better understanding of the relation between LOD, IE and LCA in BIM-based projects. Method – This research is based on an authentic ongoing construction project (casestudy), an assembled theoretical framework based on knowledge of the different subjects: LOD, BIM, LCA and IEs. And how previous researchers have faced similar issues. Also, on various thorough document analysis (BIM model and EIs) obtained from the case study. The mentioned above forms a support basis for this paper. Results – Two different BIM models were used to perform two LCA-simulations. One formed with LOD 200 provided a generic presentation of the studied element, which in this case was the model’s exterior walls. While the other model with LOD 300 generated a complex presentation of the model’s exterior walls. The simulation generated a comparative data showing that the Low LOD model had a climate impact value of 248 000 kg CO2. On the other hand, the High LOD model generated a climate impact value of 137 850 kg CO2, resulting in a 45% difference. The results presents that a lower carbon dioxide emission was caused when utilizing a higher LOD which contains more complex and specific information. The results argue for that a BIM model with the adequate amount of LOD is crucial for obtaining more reliable results when performing an LCA. Analysis – The results obtained from the LCA-simulations enhance the theories about the importance of LOD when performing an LCA. Higher LOD in a model generates more reliable results. Moreover, using a BIM software and an LCA plugin as tools facilitate the various IEs in a project. Discussion – The approach was limited to explore the environmental impact of one construction element, exterior walls, and its different LOD. Also, only the stage A1-A3 was analysed. However, trustworthy results were obtained due to the use of reliable data and research methods.
518

Управление рисками металлургического предприятия : магистерская диссертация / Metallurgical enterprise risk management

Серков, А. И., Serkov, A. I. January 2019 (has links)
Risk control, or risk management, is the process of making and executing management decisions that minimize the adverse impact of losses caused by accidental events on the enterprise. Risk management is an integrated part of total management. A concept of acceptable risk, which involves striving for risk reduction to a safe level, is at the core of all practical risk management measures. According to recent theoretical researches, one of the most objective fundamental factors when considering risks is enterprise and product life cycles. One of the well-known rational cycles of the development of social-economic enterprises is I.Adizes’s life cycle model consisting of 10 stages. The author’s intention to successfully manage an enterprise is that at the beginning it is necessary to determine at what stage of development the enterprise is located, and then develop management decisions. Moreover, it is possible to specify the most typical risks and draw up the guidance for risk impact reduction for each of ten stages depending on the type of the enterprise. The purpose of this work is to use I.Adizes’s enterprise life cycle model to assess and select ways for reduction of metallurgical enterprise operation risk. As a test of the approach proposed, recommendations for minimizing enterprise risk were developed for a typical enterprise, taking into account the life cycle of the iron and steel industry. / Управление риском, или риск-менеджмент – процесс принятия и выполнения управленческих решений, которые минимизируют неблагоприятное влияние на организацию убытков, вызванных случайными событиями. Риск-менеджмент – составная часть общего менеджмента. В основе всех практических мероприятий по управлению риском лежит концепция приемлемого риска, которая заключается в стремлении к снижению риска до безопасного уровня. Как указывают последние теоретические исследования, одним из максимально объективных базовых факторов при изучении рисков является жизненный цикл организации и жизненный цикл выпускаемой продукции. Одним из известных рациональных циклов развития социально-экономических организаций является модель жизненного цикла И.Адизеса, состоящая из десяти этапов. Установка автора на успешное управление организацией заключается в том, что вначале необходимо определить на каком этапе развития находится организация, а затем разрабатывать управленческие решения. Причём, каждому из десяти этапов, в зависимости от типа предприятия, можно указать наиболее характерные риски и наметить направления снижения влияния данных рисков. Целью данной работы является применение модели жизненного цикла организации И.Адизеса для оценки и выбора путей снижения риска работы металлургического предприятия. В качестве апробации предложенного подхода, для типичного предприятия разработаны рекомендации по минимизации риска предприятии с учётом этапа жизненного цикла чёрной металлургии.
519

Life Cycle Assessment for Improving Sustainability of Aquaculture and Aquaponics

April Janai Arbour (17583837) 09 December 2023 (has links)
<p dir="ltr">Controlled environment agriculture (CEA) is a practice of food production under optimized conditions to intensify production yield, and thus has potential for addressing food security for a growing population. Aquaculture and aquaponics are two types of CEA that can produce aquatic animals along with plants using non-arable lands and lower inputs of water and nutrients. However, their operations have high energy consumption and generate considerable nutrient-rich sludge and wastewater, making their environmental performance an emerging research focus. This thesis quantitively analyzed the environmental sustainability of aquaponics and aquaculture production using life cycle assessment (LCA).</p><p dir="ltr">The LCA on aquaponics evaluated a marine aquaponics production system that grew shrimp, red orache, minutina and okahajiki, and analyzed the effect of salinity, C/N ratio, and shrimp-to-plant stocking density. The grow-out stage accounted for over 90% of total environmental impacts with electricity use as the predominant contributor. The marine aquaponic production exhibited best environmental performance when operated at low salinity (10 ppt), and high C/N ratio (15) and stocking density (5:1), which can be further improved by 95–99% via the use of wind power as electricity source. Additionally, variation in the prices of aquaponic products was found to improve the system’s environmental impacts by up to 8%.</p><p dir="ltr">The aquaculture LCA focused on shrimp recirculating aquaculture systems (RAS) and evaluated the environmental feasibility of microalgae-based wastewater treatment. Microalgae treatment effectively removed 74% of phosphate in RAS wastewater and thus reduced the freshwater eutrophication potential by 55%. However, its remediation performance was inferior to activated sludge treatment due to different operation scales. Electricity was the principal hotspot of microalgae treatment and made up over 99% of all the environmental impacts, which can be considerably decreased by reducing coal use in the electricity supply. Three utilization pathways for algal biomass (feed ingredient, biodiesel and biogas) were investigated; however, only biogas production was found to show environmental benefits to marine eutrophication remediation owing to the low biomass quantity produced.</p><p dir="ltr">While <a href="" target="_blank">aquaculture and aquaponics</a> play important roles in meeting the globally growing demand for seafood, this thesis provides valuable life cycle inventory data for these fields. Moreover, the LCA models developed in this thesis are useful decision-making tools for aquaculture and aquaponic producers to adapt farming practices with lower environmental footprint.</p>
520

Characterisation, biophysical modelling and monetary valuation of urban nature-based solutions as a support tool for urban planning and landscape design

Babi Almenar, Javier 27 January 2021 (has links)
The recognition of nature in the resolution of societal challenges has been growing in relevance. This recognition has been associated with the development of new concepts from science and policy such as natural capital, ecosystem services, green infrastructure, and more recently Nature-Based Solutions (NBS). NBS intends to address societal challenges in an effective and adaptive form providing economic, social, and environmental benefits. The overall aim of this PhD thesis is to develop an environmental and economic assessment of NBS for highly urbanised territories based on rationales and models underpinning ecosystem services, urban/landscape ecology, and life cycle thinking approaches. This combined evaluation approach would help to better understand if NBS are cost-effective or not. The aim is developed according to four specific objectives. The first objective corresponds to the characterisation of NBS in relation to urban contexts and the problematics that they can help to address or mitigate. To achieve this objective a critical review on the study of the relationship between NBS, ecosystem services (ES) and urban challenges (UC) was developed. As a main output, a graph of plausible cause-effect relationships between NBS, ES and UC is obtained. The graph represents a first step to support sustainable urban planning, moving from problems (i.e. urban challenges) to actions (i.e. NBS) to resolutions (i.e. ES). The second objective corresponds to the definition of an adequate set of biophysical and monetary assessment methods and indicators to evaluate the value of NBS in urbanised contexts. To achieve this objective, a review of existing methods on ecosystem services valuation, life cycle cost analysis and life-cycle assessment are developed. The review takes into account specific constraints such as easiness to use and availability of data. At the end, potential methods and indicators were selected, which will be later integrated in the combined assessment framework. The third objective corresponds to the design of a combined assessment framework integrating methods from life cycle assessment, landscape/urban ecology and ecosystem services that quantifies the environmental and economic value of NBS informing about the cost-effectiveness of its entire life cycle. To achieve this objective, a conceptual framework is developed. From it, a system dynamics model of ecosystem (dis)services is developed and coupled with a life cycle assessment method. The combined evaluation is tested with a relevant NBS type (i.e. urban forest) in a case study in the metropolitan area of Madrid. The fourth objective is the development of a decision support (DSS) tool that integrates the assessment framework as part of iterative design processes in urban planning and landscape design. The DSS intends to enhance the interrelation between science, policy and planning/design. To achieve this objective a user-friendly web-based prototype DSS on NBS, called NBenefit$®, is developed. The prototype DSS provides the user a simple form of quantifying the provision of multiple ES and costs over the entire life cycle (implementation, operational life, and end-of-life) of NBS. This thesis contributed to the characterisation of NBS and its environmental and economic assessment to inform urban planning and landscape design processes, allowing decisions that are more informed. / Il riconoscimento della natura nella risoluzione delle sfide sociali è diventato sempre più importante. Questo riconoscimento è stato associato allo sviluppo di nuovi concetti provenienti dalla scienza e dalla politica, come il capitale naturale, i servizi ecosistemici, le infrastrutture verdi e, più recentemente, le soluzioni basate sulla natura (NBS). NBS intende affrontare le sfide della società in una forma efficace e adattabile fornendo benefici economici, sociali e ambientali. Lo scopo di ricerca di questa tesi di dottorato è quello di sviluppare una valutazione ambientale ed economica delle NBS per territori altamente urbanizzati basata su logiche e modelli che hanno alla base i servizi ecosistemici, l'ecologia urbana e paesaggistica e degli approcci di approcio life cycle. Questo quadro di valutazione combinato aiuterebbe a capire meglio se le NBS sono costo effetive e se contribuiscono a uno sviluppo resiliente e sostenibile. Questo scopo di ricerca è sviluppato secondo quattro obiettivi specifici. Il primo obiettivo corrisponde alla caratterizzazione delle NBS in relazione ai contesti urbani e alle problematiche che possono aiutare ad affrontare o mitigare. Per raggiungere questo obiettivo è stata sviluppata una revisione critica dell letteratura sullo studio della relazione tra NBS, servizi ecosistemici (ES) e sfide urbane (UC). Come risultato principale, si ottiene un grafico delle relazioni causa-effetto plausibili tra NBS, ES ed UC. Il grafico rappresenta un primo passo per supportare la pianificazione urbana sostenibile, passando dai problemi (es. UC) alle azioni (es. NBS) alle risoluzioni (es. ES). Il secondo obiettivo corrisponde alla definizione di un set di metodi e indicatori di valutazione biofisica e monetaria adeguate per valutare il valore della NBS in contesti urbanizzati. Per raggiungere questo obiettivo, viene sviluppata una revisione dei metodi esistenti sulla valutazione dei servizi ecosistemici, l'analisi dei costi del ciclo di vita e la valutazione del ciclo di vita. La revisione tiene conto di vincoli specifici come la facilità d'uso e la disponibilità dei dati. Alla fine, sono stati selezionati potenziali metodi e indicatori, che saranno successivamente integrati nel quadro di valutazione combinato. Il terzo obiettivo corrisponde alla progettazione del quadro di valutazione combinato, integrando metodi di valutazione del ciclo di vita, ecologia paesaggistica / urbana e servizi ecosistemici che quantifica il valore ambientale ed economico della NBS informando sull'efficacia in termini di costi del suo intero ciclo di vita. Per raggiungere questo obiettivo, prima viene sviluppato un quadro concettuale. Da esso, viene sviluppato un modello di dinamica di sistemi per calcolare i servizi (e disservici) ecosistemici, il quale è interrelazionato con un metodo di valutazione life cycle. Questa valutazione combinata viene testata con un tipo di NBS pertinente (foresta urbana) in un caso di studio nell'area metropolitana di Madrid. Il quarto obiettivo è lo sviluppo di uno strumento di supporto decisionale (DSS) che integri il quadro di valutazione come parte dei processi di progettazione iterativa nella pianificazione urbana e nella progettazione del paesaggio. Il DSS intende migliorare l'interrelazione tra scienza, politica e pianificazione / progettazione. Per raggiungere questo obiettivo è stato sviluppato Nbenefit$® un prototipo di DSS online per la valutazzione NBS di facile uso. Il prototipo DSS fornisce all'utente una forma semplice per quantificare multipli ES e costi (internalizatti o no) durante l'intero ciclo di vita (implementazione, vita operativa e fine vita) del NBS. In conclusione, questa tesi ha contribuito alla caratterizzazione di NBS e alla sua valutazione ambientale ed economica per informare i processi di pianificazione urbana e progettazione del paesaggio, consentendo decisioni più informate.

Page generated in 0.0407 seconds