• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 55
  • 22
  • 19
  • 15
  • 8
  • 5
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 160
  • 64
  • 63
  • 51
  • 50
  • 45
  • 31
  • 30
  • 29
  • 27
  • 25
  • 25
  • 24
  • 24
  • 22
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Analog and Digital Approaches to UWB Narrowband Interference Cancellation

Omid, Abedi 02 October 2012 (has links)
Ultra wide band (UWB) is an extremely promising wireless technology for researchers and industrials. One of the most interesting is its high data rate and fading robustness due to selective frequency fading. However, beside such advantages, UWB system performance is highly affected by existing narrowband interference (NBI), undesired UWB signals and tone/multi-tone noises. For this reason, research about NBI cancellation is still a challenge to improve the system performance vs. receiver complexity, power consumption, linearity, etc. In this work, the two major receiver sections, i.e., analog (radiofrequency or RF) and digital (digital signal processing or DSP), were considered and new techniques proposed to reduce circuit complexity and power consumption, while improving signal parameters. In the RF section, different multiband UWB low-noise amplifier key design parameters were investigated like circuit configuration, input matching and desired/undesired frequency band filtering, highlighting the most suitable filtering package for efficient UWB NBI cancellation. In the DSP section, due to pulse transmitter signals, different issues like modulation type and level, pulse variety, shape and color noise/tone noise assumptions, were addressed for efficient NBI cancelation. A comparison was performed in terms of bit-error rate, signal-to-interference ratio, signal-to-noise ratio, and channel capacity to highlight the most suitable parameters for efficient DSP design. The optimum number of filters that allows the filter bandwidth to be reduced by following the required low sampling rate and thus improving the system bit error rate was also investigated.
112

Réalisation d'un laser LNA monomode et asservi sur la transition 23S1-23P de l'hélium 4 (1083nm): utilisation pour quelques expériences de refroidissement radiatif d'atomes d'hélium 4 métastable

Vansteenkiste, Nathalie 03 October 1989 (has links) (PDF)
Ce mémoire présente quelques expériences de refroidissement radiatif transverse d'un jet d'hélium 4 métastable sur la transition 23S → 2 3P . Une première partie est consacrée à la description du laser à solide (LNA), en anneau, monomode et asservi sur la raie atomique à 1.083 micron de l'hélium, qui a été construit pour ces expériences. La seconde partie décrit quelques expériences de refroidissement radiatif transverse d'un jet d'hélium métastable qui ont été réalisées avec ce laser ; on y présente en particulier une expérience utilisant un piégeage cohérent de population ("résonance noire") sélectif en vitesse, qui a permis d'atteindre une température à une dimension de 2 microKelvins, inférieure à l'énergie de recul d'un seul photon.
113

Laser LNA de puissance, application au pompage optique de l'hélium-3 et des mélanges hélium-3/hélium-4

Larat, Christian 25 October 1991 (has links) (PDF)
No description available.
114

Conception et évaluation d'une technique de DfT pour un amplificateur faible bruit RF

Tongbong, J. 07 December 2009 (has links) (PDF)
Le test en production des circuits intégrés analogiques RF (Radio Fréquences) est coûteux aussi bien en ressources (équipement spécifique) qu'en temps. Afin de réduire le coût du test, des techniques de DfT (Design for Test) et d'auto test (BIST, Built-in-Self-Test) sont envisagées bien qu'actuellement inutilisées par l'industrie du semi-conducteur. Dans cette thèse, nous concevons et évaluons une technique d'auto test pour un amplificateur faible bruit (LNA, Low Noise Amplifier) RF. Cette technique utilise des capteurs intégrés pour la mesure du courant de consommation et de la tension en sortie du circuit à tester. Ces capteurs fournissent en sortie un signal basse fréquence. La qualité de la technique de BIST est évaluée en fonction des métriques de test qui tiennent compte des déviations du process et de la présence de fautes catastrophiques et paramétriques. Pour obtenir une estimation des métriques de test avec une précision de parts-par-million, un premier échantillonnage du circuit à tester est obtenu par simulation électrique Monte Carlo. Par la suite, un modèle statistique de la densité de probabilité conjointe des performances et des mesures de test du circuit est obtenu. Finalement, l'échantillonnage de ce modèle statistique nous permet la génération d'un million de circuits. Cette population est alors utilisée pour la fixation des limites de test des capteurs et le calcul des métriques. La technique d'auto test a été validée sur un LNA en technologie BiCMOS 0.25m, utilisant différents modèles statistiques. Une validation au niveau layout a été faite afin d'obtenir des résultats aussi proches que possible lors d'un test en production d'une population de circuits.
115

System Design of RF Receiver and Digital Implementation of Control Logic

Ström, Marcus January 2003 (has links)
<p>This report is the outcome of a thesis work done at Linköpings University, campus Norrköping. The thesis work was part of the development of a RF transceiver chip for implantable medical applications. The development was done in cooperation with Zarlink Semiconductor AB, located in Järfälla, Stockholm.</p><p>The transceiver is divided into three main blocks, which are the wakeup block, the MAC block and the RF block. The wakeup block is always operating and is awaiting a wakeup request in the 2,45GHz ISM-band. The RF-block is operating in the 400MHz ISM-band and is powered up after wakeup The MAC is the controller of the whole chip. All three blocks in the transceiver structure should be integrated on the same chip, using TSMC 0,18µm process design kit for CMOS (Mixed Signal /RF).</p><p>The purpose of the thesis work was to develop the wakeup circuit for the transceiver. The main purpose was to develop the digital control logic in the circuitry, using RTL-coding (mainly VHDL) but the thesis work also included a system analysis of the whole wakeup block, including the front-end, for getting a better overview and understanding of the project.</p><p>A complete data packet or protocol for the wakeup message on 2,45GHz, is defined in the report and is one of the results of the project. The packet was developed continuously during progress in the project. Once the data packet was defined the incoming RF stage could be investigated. The final proposal to a complete system design for the wakeup block in the RF transceiver is also one of the outcomes of the project. The front-end consists mainly of a LNA, a simple detector and a special decoder. Since the total power consumption on the wakeup block was set to 200nA, this had to be taken under consideration continuously. There was an intention not to have an internal clock signal or oscillator available in the digital part (for keeping the power consumption down). The solution to this was a self-clocking method used on the incoming RF signal. A special decoder distinguishes the incoming RF signal concerning the burst lengths in time. The decoder consists of a RC net that is uploaded and then has an output of 1, if the burst length is long enough and vice versa.</p><p>When it was decided to use a LNA in the front-end, it was found that it could not be active continuously, because of the requirements on low power consumption. The solution to this was to use a strobe signal for the complete front-end, which activates it. This strobe signal was extracted in the digital logic. The strobe signal has a specific duty cycle, depending on the time factors in the detector and in the decoder in the front-end. The total strobing time is in the implemented solution 250µs every 0,5s.</p><p>The digital implementation of the control logic in the wakeupblock was made in VHDL (source code) and Verilog (testbenches). The source code was synthesized against the component library for the process 0,18µm from TSMC, which is a mixed/signal and RF process. The netlist from the synthesizing was stored as a Verilog file and simulated together with the testbenches using the simulator Verilog-XL. The results from the simulations were examined and reviewed in the program Simvison from Cadence. The result was then verified during a pre-layout review together with colleagues at Zarlink Semiconductor AB. During the implementation phase a Design report was written continuously and then used for the pre-layout review. Extracts (source code and testbench) from this document can be found as appendixes to the report.</p>
116

Design and implementation of a 5GHz radio front-end module

Backström, Anders, Ågesjö, Mats January 2004 (has links)
<p>The overall goal of this diploma work is to produce a design of a 5 GHz radio frontend using Agilent Advanced Design System (ADS) and then build a working prototype. Using this prototype to determine if RF circuits at 5 GHz can be successfully produced using distributed components on a laminate substrate. </p><p>The design process for the radio front-end consists of two stages. In the first stage the distributed components are designed and simulated, and in the second stage all components are merged into a PCB. This PCB is then manufactured and assembled. All measurements on the radio front-end and the test components are made using a network analyser, in order to measure the S-parameters. </p><p>This diploma work has resulted in a functional design and prototype, which has proved that designing systems for 5 GHz on a laminate substrate is possible but by no means trivial.</p>
117

Design of Active CMOS Multiband Ultra-Wideband Receiver Front-End

Reja, Md Mahbub 06 1900 (has links)
Inductors are extensively used in the design of radio-frequency circuits. In the last decade, the integration of passive components, especially inductors on silicon chips, has led to the widespread development and implementation of Radio Frequency Integrated Circuits (RFICs) in CMOS technologies. However, on-chip passive inductors occupy a large silicon chip area and hardly scale down with technology scaling. Therefore, on-chip passive inductors become formidable obstacles to the realization of highly dense RFICs to be integrated with other highly dense digital circuits on a single chip using a common fabrication process. In recent years, researchers have focused on replacing passive inductors with transistor-only active circuits, namely active inductors. Active inductors can be realized with only a few transistors, which scale down with technology scaling. Therefore, they occupy a fraction of the chip area of their passive counterparts, and can be implemented densely in CMOS processes. Unlike passive inductors, bias dependent operations of active inductors allow for the tuning of their inductance and quality factor Q, and in turn, tuning the performance parameters of RFICs. This thesis focuses on the design and development of passive inductorless CMOS RFICs for ultra-wideband (UWB) receiver front-ends using active inductors. A new Q-enhanced and a new bandwidth-extended tunable active inductors are designed. Using the Q-enhanced active inductor, two tunable UWB low-noise amplifiers (LNAs) (two-stage and three-stage UWB LNAs), a UWB mixer and a wideband local-oscillator (LO) driver are designed. Active inductors are utilized to develop a novel wideband active shunt-peaking technique that decreases high-frequency losses to yield a flat gain over a wide bandwidth. A tunable multiband-UWB front-end integrating a two-stage UWB LNA, and a pair of UWB mixers driven by a pair of wideband LO drivers, is fabricated in a 90nm digital CMOS process. The passive inductorless two-stage UWB LNA, three-stage UWB LNA and UWB front-end occupy chip areas of only 0.0114mm2, 0.0227mm2, and 0.1485mm2, respectively. The active CMOS UWB front-end exhibits a measured flat gain of 22.5dB over 2.5-8.8 GHz bandwidth, and its tunability allows for varying the gain and bandwidth. / Integrated Circuits and Systems
118

Analog and Digital Approaches to UWB Narrowband Interference Cancellation

Omid, Abedi 02 October 2012 (has links)
Ultra wide band (UWB) is an extremely promising wireless technology for researchers and industrials. One of the most interesting is its high data rate and fading robustness due to selective frequency fading. However, beside such advantages, UWB system performance is highly affected by existing narrowband interference (NBI), undesired UWB signals and tone/multi-tone noises. For this reason, research about NBI cancellation is still a challenge to improve the system performance vs. receiver complexity, power consumption, linearity, etc. In this work, the two major receiver sections, i.e., analog (radiofrequency or RF) and digital (digital signal processing or DSP), were considered and new techniques proposed to reduce circuit complexity and power consumption, while improving signal parameters. In the RF section, different multiband UWB low-noise amplifier key design parameters were investigated like circuit configuration, input matching and desired/undesired frequency band filtering, highlighting the most suitable filtering package for efficient UWB NBI cancellation. In the DSP section, due to pulse transmitter signals, different issues like modulation type and level, pulse variety, shape and color noise/tone noise assumptions, were addressed for efficient NBI cancelation. A comparison was performed in terms of bit-error rate, signal-to-interference ratio, signal-to-noise ratio, and channel capacity to highlight the most suitable parameters for efficient DSP design. The optimum number of filters that allows the filter bandwidth to be reduced by following the required low sampling rate and thus improving the system bit error rate was also investigated.
119

System Design of RF Receiver and Digital Implementation of Control Logic

Ström, Marcus January 2003 (has links)
This report is the outcome of a thesis work done at Linköpings University, campus Norrköping. The thesis work was part of the development of a RF transceiver chip for implantable medical applications. The development was done in cooperation with Zarlink Semiconductor AB, located in Järfälla, Stockholm. The transceiver is divided into three main blocks, which are the wakeup block, the MAC block and the RF block. The wakeup block is always operating and is awaiting a wakeup request in the 2,45GHz ISM-band. The RF-block is operating in the 400MHz ISM-band and is powered up after wakeup The MAC is the controller of the whole chip. All three blocks in the transceiver structure should be integrated on the same chip, using TSMC 0,18µm process design kit for CMOS (Mixed Signal /RF). The purpose of the thesis work was to develop the wakeup circuit for the transceiver. The main purpose was to develop the digital control logic in the circuitry, using RTL-coding (mainly VHDL) but the thesis work also included a system analysis of the whole wakeup block, including the front-end, for getting a better overview and understanding of the project. A complete data packet or protocol for the wakeup message on 2,45GHz, is defined in the report and is one of the results of the project. The packet was developed continuously during progress in the project. Once the data packet was defined the incoming RF stage could be investigated. The final proposal to a complete system design for the wakeup block in the RF transceiver is also one of the outcomes of the project. The front-end consists mainly of a LNA, a simple detector and a special decoder. Since the total power consumption on the wakeup block was set to 200nA, this had to be taken under consideration continuously. There was an intention not to have an internal clock signal or oscillator available in the digital part (for keeping the power consumption down). The solution to this was a self-clocking method used on the incoming RF signal. A special decoder distinguishes the incoming RF signal concerning the burst lengths in time. The decoder consists of a RC net that is uploaded and then has an output of 1, if the burst length is long enough and vice versa. When it was decided to use a LNA in the front-end, it was found that it could not be active continuously, because of the requirements on low power consumption. The solution to this was to use a strobe signal for the complete front-end, which activates it. This strobe signal was extracted in the digital logic. The strobe signal has a specific duty cycle, depending on the time factors in the detector and in the decoder in the front-end. The total strobing time is in the implemented solution 250µs every 0,5s. The digital implementation of the control logic in the wakeupblock was made in VHDL (source code) and Verilog (testbenches). The source code was synthesized against the component library for the process 0,18µm from TSMC, which is a mixed/signal and RF process. The netlist from the synthesizing was stored as a Verilog file and simulated together with the testbenches using the simulator Verilog-XL. The results from the simulations were examined and reviewed in the program Simvison from Cadence. The result was then verified during a pre-layout review together with colleagues at Zarlink Semiconductor AB. During the implementation phase a Design report was written continuously and then used for the pre-layout review. Extracts (source code and testbench) from this document can be found as appendixes to the report.
120

Design and implementation of a 5GHz radio front-end module

Backström, Anders, Ågesjö, Mats January 2004 (has links)
The overall goal of this diploma work is to produce a design of a 5 GHz radio frontend using Agilent Advanced Design System (ADS) and then build a working prototype. Using this prototype to determine if RF circuits at 5 GHz can be successfully produced using distributed components on a laminate substrate. The design process for the radio front-end consists of two stages. In the first stage the distributed components are designed and simulated, and in the second stage all components are merged into a PCB. This PCB is then manufactured and assembled. All measurements on the radio front-end and the test components are made using a network analyser, in order to measure the S-parameters. This diploma work has resulted in a functional design and prototype, which has proved that designing systems for 5 GHz on a laminate substrate is possible but by no means trivial.

Page generated in 0.0338 seconds