• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 246
  • 16
  • 6
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 321
  • 177
  • 154
  • 129
  • 116
  • 111
  • 89
  • 84
  • 77
  • 77
  • 65
  • 60
  • 59
  • 59
  • 57
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Long Horizon Volatility Forecasting Using GARCH-LSTM Hybrid Models: A Comparison Between Volatility Forecasting Methods on the Swedish Stock Market / Långtids volatilitetsprognostisering med GARCH-LSTM hybridmodeller: En jämförelse mellan metoder för volatilitetsprognostisering på den svenska aktiemarknaden

Eliasson, Ebba January 2023 (has links)
Time series forecasting and volatility forecasting is a particularly active research field within financial mathematics. More recent studies extend well-established forecasting methods with machine learning. This thesis will evaluate and compare the standard Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model and some of its extensions to a proposed Long Short-Term Memory (LSTM) model on historic data from five Swedish stocks. It will also explore hybrid models that combine the two techniques to increase prediction accuracy over longer horizons. The results show that the predictability increases when switching from univariate GARCH and LSTM models to hybrid models combining them both. Combining GARCH, Glosten, Jagannathan, and Runkle GARCH (GJR-GARCH), and Fractionally Integrated GARCH (FIGARCH) yields the most accurate result with regards to mean absolute error and mean square error. The forecasting errors decreased with 10 to 50 percent using the hybrid models. Comparing standard GARCH to the hybrid models, the biggest gains were seen at the longest horizon, while comparing the LSTM to the hybrid models, the biggest gains were seen for the shorter horizons. In conclusion, the prediction ability increases using the hybrid models compared to the regular models. / Tidsserieprognostisering, och volatilitetsprognostiering i synnerhet, är ett växande fält inom finansiell matamatik som kontinereligt står inför implementation av nya tekniker. Det som en gång startade med klassiksa tidsseriemodeller som ARCH har nu utvecklats till att dra fördel av maskininlärning och neurala nätverk. Detta examensarbetet uvärderar och jämför Generalized Autoregressive Conditional Heteroskedasticity (GARCH) modeller och några av dess vidare tillämpningar med Long Short-Term Memory (LSTM) modeller på fem svenska aktier. ARbetet kommer även gå närmare inpå hybridmodeller som kombinerar dessa två tekniker för att öka tillförlitlig prognostisering under längre tidshorisonter. Resultaten visar att förutsägbarheten ökar genom att byta envariata GARCH och LSTM modeller till hybridmodeller som kombinerar båda delarna. De mest korrekta resultaten kom från att kombinera GARCH, Glosten, Jagannathan, och Runkle GARCH (GJR-GARCH) och Fractionally Integrated GARCH (FIGARCH) modeller med ett LSTM nätverk. Prognostiseringsfelen minskade med 10 till 50 procent med hybridmodellerna. Specifikt, vid jämförelse av GARCH modellerna till hybridmodellerna sågs de största förbättringarna för de längre tidshorisonterna, medans jämförelse mellan LSTM och hybridmodellerna sågs den mesta förbättringen hos de kortare tidshorisonterna. Sammanfattningsvis öker prognostiseringsförmågan genom användning av hybridmodeller i jämförelse med standardmodellerna.
82

Integrating Customer Behavior Analysisfor Cost Prediction and ResourceUtilization in Mobile Networks : A Machine Learning Approach to Azure Server Analysis / Integrering av kundbeteendeanalys förkostnadsprediktion och resursutnyttjande imobila nätverk : En maskininlärningsmetod till Azure-serveranalys

Lind Amigo, Patrik, Hedblom, Vincent January 2024 (has links)
With the rapid evolution in mobile telecommunications, there is a significant need for more accurate and efficient management of resources such as CPU, RAM, and bandwidth. This thesis utilizes customer usage data alongside machine learning algorithms to predict resource demands, enabling telecommunications service providers to optimize service quality and reduce unnecessary costs. This thesis investigates enhancing mobile network cost prediction and resource utilization by integrating customer behavior analysis using machine learning models. As a predictive model we employed various machine learning techniques, including Random Forest Regressor and Recurrent Neural Networks (LSTM and GRU), and can effectively predict resource needs based on user events. Among these models, the Random Forest Regressor performed the best. This model enhances operational efficiency by providing precise resource predictions within the dataset ranges. / Med den snabba utvecklingen inom mobiltelekommunikation finns det ett betydande behov av mer exakt och effektiv hantering av resurser som CPU, RAM och bandbred. Rapporten använder data om kundanvändning tillsammans med maskininlärningsalgoritmer för att förutsäga resursbehov, vilket möjliggör att telekommunikationsleverantörer kan optimera tjänstekvalitet och minska onödiga kostnader. Detta examensarbete undersöker hur förutsägelser av kostnader och resursanvändning i mobila nätverk kan förbättras genom att integrera analys av kundbeteende med maskininlärningsmodeller. Som en prediktiv modell använde vi olika maskininlärningstekniker, inklusive Random Forest Regressor och Recurrent Neural Networks (LSTM och GRU), effektivt kan förutsäga resursbehov baserat på användarhändelser. Bland dessa modeller presterade Random Forest Regressor bäst. Denna modell förbättrar den operativa effektiviteten genom att ge mer precisa resurs prediktion inom datamängdens intervaller.
83

Anomaly Detection in Telecom Service Provider Network Infrastructure Security Logs using an LSTM Autoencoder : Leveraging Time Series Patterns for Improved Anomaly Detection / Avvikelsedetektering i säkerhetsloggar för nätverksinfrastruktur hos en telekomtjänstleverantör med en LSTM Autoencoder : Uttnyttjande av tidsseriemönster för förbättrad avvikelsedetektering

Vlk, Vendela January 2024 (has links)
New regulations are placed on Swedish Telecom Service Providers (TSPs) due to a rising concern for safeguarding network security and privacy in the face of ever-evolving cyber threats. These regulations demand that Swedish telecom companies expand their data security strategies with proactive security measures. Logs, serving as digital footprints in IT infrastructure, play a crucial role in identifying anomalies that could indicate security breaches. Deep Learning (DL) has been used to detect anomalies in logs due to its ability to discern intricate patterns within the data. By leveraging deep learning-based models, it is not only possible to identify anomalies but also to predict and mitigate potential threats within the telecom network. An LSTM autoencoder was implemented to detect anomalies in two separate multivariate temporal log datasets; the BETH cybersecurity dataset, and a Cisco log dataset that was created specifically for this thesis. The empirical results in this thesis show that the LSTM autoencoder reached an ROC AUC of 99.5% for the BETH dataset and 76.6% for the Cisco audit dataset. The use of an additional anomaly detection aid in the Cisco audit dataset let the model reach an ROC AUC of 99.6%. The conclusion that could be drawn from this work was that the systematic approach to developing a deep learning model for anomaly detection in log data was efficient. However, the study’s findings raise crucial considerations regarding the appropriateness of various log data for deep learning models used in anomaly detection. / Nya föreskrifter har införts för svenska telekomtjänsteleverantörer på grund av en ökad angelägenhet av att säkerställa nätverkssäkerhet och integritet inför ständigt föränderliga cyberhot. Dessa föreskrifter kräver att svenska telekomföretag utvidgar sina dataskyddsstrategier med proaktiva säkerhetsåtgärder. Loggar, som fungerar som digitala fotspår inom IT-infrastruktur, spelar en avgörande roll för att identifiera avvikelser som kan tyda på säkerhetsintrång. Djupinlärning har använts för att upptäcka avvikelser i loggar på grund av dess förmåga att urskilja intrikata mönster inom data. Genom att utnyttja modeller baserade på djupinlärning är det inte bara möjligt att identifiera avvikelser utan även att förutsäga samt mildra konsekvenserna av potentiella hot inom telekomnätet. En LSTM-autoencoder implementerades för att upptäcka avvikelser i två separata multivariata tidsserielogguppsättningar; BETH-cybersäkerhetsdatauppsättningen och en Cisco-loggdatauppsättning som skapades specifikt för detta arbete. De empiriska resultaten i denna avhandling visar att LSTM-autoencodern uppnådde en ROC AUC på 99.5% för BETH-datauppsättningen och 76.6% för Cisco-datauppsättningen. Användningen av ett ytterligare avvikelsedetekteringsstöd i Cisco-datauppsättningen möjliggjorde att modellen uppnådde en ROC AUC på 99.6%. Slutsatsen som kunde dras från detta arbete var att den systematiska metoden för att utveckla en djupinlärningsmodell för avvikelsedetektering i loggdata var effektiv. Dock väcker studiens resultat kritiska överväganden angående lämpligheten av olika loggdata för djupinlärningsmodeller som används för avvikelsedetektering.
84

Sentiment Analysis of Nordic Languages

Mårtensson, Fredrik, Holmblad, Jesper January 2019 (has links)
This thesis explores the possibility of applying sentiment analysis to extract tonality of user reviews on the Nordic languages. Data processing is performed in the form of preprocessing through tokenization and padding. A model is built in a framework called Keras. Models for classification and regression were built using LSTM and GRU architectures. The results showed how the dataset influences the end result and the correlation between observed and predicted values for classification and regression. The project shows that it is possible to implement NLP in the Nordic languages and how limitations in input and performance in hardware affected the result. Some questions that arose during the project consist of methods for improving the dataset and alternative solutions for managing information related to big data and GDPR. / Denna avhandling undersöker möjligheten att tillämpa sentiment analys för att extrahera tonalitet av användarrecensioner på nordiska språk. Databehandling utförs i form av förprocessering genom tokenisering och padding. En modell är uppbyggd i en ramverkad Keras. Modeller för klassificering och regression byggdes med LSTM och GRU-arkitekturer. Resultaten visade hur datasetet påverkar slutresultatet och korrelationen mellan observerade och förutspådda värden för klassificering och regression. Projektet visar att det är möjligt att implementera NLP på de nordiska språken och hur begränsningar i input och prestanda i hårdvara påverkat resultatet. Några frågor som uppstod under projektet består av metoder för att förbättra datasetet och alternativa lösningar för hantering av information relaterad till stora data och GDPR.
85

APPLICATIONS OF DEEP LEARNING IN TEXT CLASSIFICATION FOR HIGHLY MULTICLASS DATA

Grünwald, Adam January 2019 (has links)
Text classification using deep learning is rarely applied to tasks with more than ten target classes. This thesis investigates if deep learning can be successfully applied to a task with over 1000 target classes. A pretrained Long Short-Term Memory language model is fine-tuned and used as a base for the classifier. After five days of training, the deep learning model achieves 80.5% accuracy on a publicly available dataset, 9.3% higher than Naive Bayes. With five guesses, the model predicts the correct class 92.2% of the time.
86

Predictive Maintenance of NOx Sensor using Deep Learning : Time series prediction with encoder-decoder LSTM

Kumbala, Bharadwaj Reddy January 2019 (has links)
In automotive industry there is a growing need for predicting the failure of a component, to achieve the cost saving and customer satisfaction. As failure in a component leads to the work breakdown for the customer. This paper describes an effort in making a prediction failure monitoring model for NOx sensor in trucks. It is a component that used to measure the level of nitrogen oxide emission from the truck. The NOx sensor has chosen because its failure leads to the slowdown of engine efficiency and it is fragile and costly to replace. The data from a good and contaminated NOx sensor which is collated from the test rigs is used the input to the model. This work in this paper shows approach of complementing the Deep Learning models with Machine Learning algorithm to achieve the results. In this work LSTMs are used to detect the gain in NOx sensor and Encoder-Decoder LSTM is used to predict the variables. On top of it Multiple Linear Regression model is used to achieve the end results. The performance of the monitoring model is promising. The approach described in this paper is a general model and not specific to this component, but also can be used for other sensors too as it has a universal kind of approach.
87

Human Activity Recognition and Prediction using RGBD Data

Coen, Paul Dixon 01 August 2019 (has links)
Being able to predict and recognize human activities is an essential element for us to effectively communicate with other humans during our day to day activities. A system that is able to do this has a number of appealing applications, from assistive robotics to health care and preventative medicine. Previous work in supervised video-based human activity prediction and detection fails to capture the richness of spatiotemporal data that these activities generate. Convolutional Long short-term memory (Convolutional LSTM) networks are a useful tool in analyzing this type of data, showing good results in many other areas. This thesis’ focus is on utilizing RGB-D Data to improve human activity prediction and recognition. A modified Convolutional LSTM network is introduced to do so. Experiments are performed on the network and are compared to other models in-use as well as the current state-of-the-art system. We show that our proposed model for human activity prediction and recognition outperforms the current state-of-the-art models in the CAD-120 dataset without giving bounding frames or ground-truths about objects.
88

Recurrent Neural Networks for Fault Detection : An exploratory study on a dataset about air compressor failures of heavy duty trucks

Chen, Kunru January 2018 (has links)
No description available.
89

Machine Learning-based path prediction for emergency vehicles

Rosberg, Felix, Ghassemloi, Aidin January 2018 (has links)
No description available.
90

Electrocardiographic deviation detection : Using long short-term memory recurrent neural networks to detect deviations within electrocardiographic records

Racette Olsén, Michael January 2018 (has links)
Artificial neural networks have been gaining attention in recent years due to theirimpressive ability to map out complex nonlinear relations within data. In this report,an attempt is made to use a Long short-term memory neural network for detectinganomalies within electrocardiographic records. The hypothesis is that if a neuralnetwork is trained on records of normal ECGs to predict future ECG sequences, it isexpected to have trouble predicting abnormalities not previously seen in the trainingdata. Three different LSTM model configurations were trained using records fromthe MIT-BIH Arrhythmia database. Afterwards the models were evaluated for theirability to predict previously unseen normal and anomalous sections. This was doneby measuring the mean squared error of each prediction and the uncertainty of over-lapping predictions. The preliminary results of this study demonstrate that recurrentneural networks with the use of LSTM units are capable of detecting anomalies.

Page generated in 0.0193 seconds