Spelling suggestions: "subject:"La nanostructures"" "subject:"La nanostructured""
311 |
Crescimento e caraterização de estruturas de baixa dimensionalidade para aplicações no espectro vísivel / Growth and characterization of low dimensional structures for applications in the visible spectrumChiaramonte, Thalita 26 April 2007 (has links)
Orientadores: Lisandro Pavie Cardoso, Marco Sacilotti / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Fisica Gleb Wataghin / Made available in DSpace on 2018-08-08T18:38:56Z (GMT). No. of bitstreams: 1
Chiaramonte_Thalita_D.pdf: 12073771 bytes, checksum: d01b6c585fd5556757aea0542ecf63f2 (MD5)
Previous issue date: 2007 / Resumo: Os nitretos (Ga, Al, In)N assim como os compostos GaInP, GaCuO2, representam um sistema de materiais muito importante para as aplicações em opto-eletrônica e dispositivos tais como os diodos emissores de luz (LEDs), lasers e nanosensores. Entretanto, o requisito essencial para as aplicações industriais desses materiais é a redução em seus tamanhos. Neste trabalho foram crescidos materiais metálicos formados por nitretos de gálio e também de semicondutores do tipo GaInP, GaCuO2 na forma de estruturas 3D, pela técnica de deposição química de organometálicos em fase vapor (MOCVD). Foi utilizado como precursor organometálico (OM) o trimetil gálio Ga(CH3)3e o nitrogênio N2 como gás portador. A temperatura e a pressão foram controladas durante o crescimento variando entre 500 e 750 o C e 100 a 760 Torr, respectivamente.
Duas classes de estruturas 3D foram obtidas a partir da decomposição total ou parcial do gás pre-cursor, devido a interação entre o OM e o substrato que gera diferentes morfologias: i) as ligas metálicas (Ga, Al, In) formando estruturas semelhantes a balões, cetros (hastes com terminações esféricas) e neurônios, todos apresentando uma fina membrana de carbono amorfo que reveste a estrutura. Após o crescimento, estas estruturas foram submetidas ao processo de nitretação sob atmosfera de NH3 para transformá-las em micro/nanocristais de GaN; ii) os fios semicondutores micro/nanométricos com uma esfera metálica em sua terminação (bambus e cetros) .
Na formação de ambas as estruturas, os precursores OM são como moléculas catalisadoras do crescimento. Este crescimento é considerado como um método alternativo e original para se obter estruturas 3D. Uma possível associação com o modelo apresentado pelo mecanismo de crescimento Vapor-Líquido-Sólido (VLS), que utiliza uma partícula metálica para promover os nanotubos de carbono e os nanofios semicondutores, ainda está em discussão. Informações estruturais e ópticas dessas novas estruturas crescidas sobre substratos de Cu (grade de difração), Si (001), InP (policristalino) e Al/SiO2/Si (fotolitografia) foram obtidas através da caracterização por difração de raios-X, microscopia eletrônica de varredura e de transmissão em alta resolução, espectroscopia por energia disper-siva, catodoluminescência e a espectroscopia de excitação por dois fótons. Nas amostras nitretadas, micro/nano cristais de GaN obtidos da liga de Ga aparecem impregnados no carbono turbostrático (folhas de carbono sem orientação obtidas do amorfo) que revestem as estruturas, e emitem na região do espectro l £ 365 nm, devido às suas dimensões quânticas. As hastes das estruturas do tipo bambus apresentam nódulos formados por discos monocristalinos de GaInP rotacionados de 60 o um em relação ao outro. Óxidos CuGaO2 e CuGa2O4compondo nanofios, denominados cetros, também foram obtidos / Abstract: Nitride (Ga, Al, In)N as well as GaInP, GaCu O2 compounds represent a very important class of materials to be used in the opto-electronic and devices applications such as light emission diodes (LEDs) lasers and nanosensors. However, the essential requirement to the industrial applications of these materials is the reduction in theirs sizes. In this work 3D structures based on gallium nitride and also GaInP, GaCuO2 semiconductors were grown by metalorganic chemical vapor deposition (MOCVD) technique. Trimethyl-gallium Ga(CH3) was used as the metal-organic (MO) precursor and nitrogen N2as carrier gas. During the growth to the temperature and pressure intervals of 500 - 700 oC and 100 - 760 Torr, respectively.
Two 3D material classes were obtained from the total or partial precursor gas decomposition, since the interaction between the MO compound and the substrate gives rise to different morphologies: i) (Ga,In,Al) metallic alloys form ballons, scepters (wires with spherical ends) and neurons like structures, all involved by a thin carbon amorphous membrane. After growth, these structures were turned into GaN micro/nanocrystals by nitridation process under NH3 atmosphere; ii) micro/nanometer semiconductor wires with a metallic sphere at its end (bamboos and scepters). In order to form both structures, the MO precursors are taken as a catalyst molecule of the growth process. This is an alternative and original method to obtain 3D structures and a possible association to the model used in the vapour-liquid-solid (VLS) growth mechanism, in which a metallic particle promotes the carbon nanotubes and semiconductors nanowires is still under discussion. Structural and optical informations on these new structures grown on Cu (diffraction grid), Si(001), InP (polycrystalline) and Si/Al (photolithography) substrates were obtained through the characterization by X-ray diffraction, scanning electron microscope, high resolution transmission electron microscopy, en-ergy dispersive x-rays, cathodoluminescence and two photon excitation. In the nitrided samples, GaN micro/nanocrystals obtained from Ga alloy appear embedded in the turbostratic carbon (C sheets at random obtained from the amorphous) which involves the structures and, they emit in the l £ 365 nm region specter, due to their quantum dimensions. The bamboo rods present nodes consisting of GaInP single crystal discs turned by 60o one with respect to the other. The CuGaO2 and CuGa2O4 oxides compounding nanowires, called scepters, also were obtained. / Doutorado / Física / Doutor em Ciências
|
312 |
Préparation électrochimique et caractérisation de couches nanostructurées de semi-conducteurs de type p pour cellules photovoltaïques hybrides / Electrodeposition and characterization of p-type nanostructured semi-conductor films for hybrid photovoltaic solar cellsKoussi-Daoud, Sana 14 December 2016 (has links)
Cette thèse visait à développer des techniques de croissance électrochimiques d'oxydes pour obtenir des semi-conducteurs de type p utilisables comme photocathodes dans les cellules solaires à colorant (p-DSSC). Dans la littérature, la méthode d'électrodépôt n'a pas été explorée pour l'application p-DSSC. Les conditions de synthèse de films de NiO avec une épaisseur contrôlée ont été définies. Des couches de NiO ont été obtenues par électrodépôt en milieu aqueux, en milieu éthanol, en milieu diméthylsulfoxide DMSO et en milieu mixte DMSO/eau. Ces couches ont été caractérisées par DRX, spectroscopie Raman, MEB, mesures optiques, etc¿ puis testées comme photocathode dans des p-DSSC. L'électrodépôt de l'oxyde cuivreux Cu2O en milieu aqueux a été également étudié. Les rendements de conversion photovoltaïques des dispositifs ont été déterminés. Une nanostructuration des couches d'oxyde de nickel et d'oxyde cuivreux a aussi été réalisée en utilisant comme agent structurant des sphères de polystyrène fonctionnalisées par des groupements carboxyls. Enfin, nous avons exploré l'électrodépôt de la delafossite de cuivre CuFeO2 en milieu DMSO. / The objective of this thesis was the electrochemical deposition (ECD) of p-type semiconductors forthe fabrication of p-Dye Sensitized Solar Cells (p-DSSCs). The electrodeposition method remained unexploredfor the p-DSSC applications. The best conditions for ECD of nickel oxide layers with a controlled thickness havebeen defined. Nickel oxide has been deposited in water medium, in ethanol, in dimethyl sulfoxide (DMSO)medium and in a mixture of DMSO/water solvent. The layers have been characterized by XRD, Ramanspectroscopy, SEM, optical measurements… then have been tested as a photocathode in p-DSSCs. The cuprousoxide (Cu2O) electrodeposition in an aqueous bath has also been investigated. The photovoltaic efficiency of thevarious prepared layers has been evaluated in p-DSSCs. We have also prepared inverse opal organized structureswith a perfectly defined macropore organization and size using a macrosphere polystyrene template. Finally, wehave explored the ECD of a copper delafossite CuFeO2 in DMSO medium.
|
313 |
Prediction Of The Behaviors Of Hollow/Foam-Filled Axially Loaded Steel/Composite Hat Sections For Advanced Vehicle Crash Safety DesignHaorongbam, Bisheshwar 11 1900 (has links) (PDF)
Hat sections, single and double, made of steel are frequently encountered in automotive body structural components such as front rails, B-Pillar, and rockers of unitized-body cars. These thin-walled components can play a significant role in terms of crashworthiness and impact energy absorption, through a nonlinear phenomenon called as progressive dynamic buckling. As modern vehicle safety design relies heavily on computer-aided engineering, there is a great need for analysis-based predictions to yield close correlation with test results. Although hat sections subjected to axial loading have been studied widely in the past, there is scanty information in published literature on modeling procedures that can lead to robust prediction of test responses. In the current study, both single-hat and double-hat components made of mild steel are studied extensively experimentally and numerically to quantify statistical variations in test responses such as peak load, mean load and energy absorption, and formulate modeling conditions for capturing elasto-plastic material behavior, strain rate sensitivity, spot-welds, etc. that can lead to robust predictions of force-time and force-displacement histories as well as failure modes. In addition, keeping initial stages of vehicle design in mind, the effectiveness of soft computing techniques based on polynomial regression analysis, radial basis functions and artificial neural networks for quick assessment of the behaviors of steel hat sections has been demonstrated. The study is extended to double-hat sections subjected to eccentric impact loading which has not been previously reported. A lightweight enhancement of load carrying capacity of steel hat section components has been investigated with PU (polyurethane) foam-filled single and double hat sections, and subjecting the same to quasi-static and axial impact loading. Good
predictions of load-displacement responses are again obtained and shortening of fold lengths vis-à-vis hollow sections is observed. Finally, the performance of hat sections made of glass fiber-reinforced composites is studied as a potential lightweight substitute to steel hat section components. The challenging task of numerical prediction of the behaviors of the composite hat sections has been undertaken using a consistent modeling and analysis procedure described earlier and by choosing an appropriate constitutive behavior available in the popular explicit contact-impact analysis solver, LS-DYNA.
|
314 |
Multicomponent catalysts for methanol electro-oxidation processes synthesized using organometallic chemical vapourde position techniqueNaidoo, Qiling Ying January 2011 (has links)
Philosophiae Doctor - PhD / In this study, the OMCVD method is demonstrated as a powerful, fast, economic and environmental friendly method to produce a set of PGMelectrocatalysts with different supports, metal content and metal alloys in one step and without the multiple processing stages of impregnation, washing, drying, calcinationsand activation. / South Africa
|
315 |
Charakterizace magnetických nanostruktur pomocí mikroskopie magnetických sil / Characterization of magnetic nanostructures by magnetic force microscopyStaňo, Michal January 2014 (has links)
The thesis deals with magnetic force microscopy of soft magnetic nanostructures, mainly NiFe nanowires and thin-film elements such as discs. The thesis covers almost all aspects related to this technique - i.e. from preparation of magnetic probes and magnetic nanowires, through the measurement itself to micromagnetic simulations of the investigated samples. We observed the cores of magnetic vortices, tiny objects, both with commercial and our home-coated probes. Even domain walls in nanowires 50 nm in diameter were captured with this technique. We prepared functional probes with various magnetic coatings: hard magnetic Co, CoCr and soft NiFe. Hard probes give better signal, whereas the soft ones are more suitable for the measurement of soft magnetic structures as they do not influence significantly the imaged sample. Our probes are at least comparable with the standard commercial probes. The simulations are in most cases in a good agreement with the measurement and the theory. Further, we present our preliminary results of the probe-sample interaction modelling, which can be exploited for the simulation of magnetic force microscopy image even in the case of probe induced perturbations of the sample.
|
316 |
Bioinspired surfaces and materialsSchirhagl, Romana, Weder, Christoph, Lei, Jiang, Werner, Carsten, Textor, Hans Marcus 07 January 2020 (has links)
Over millions of years evolution has optimized the properties of materials via natural selection for many specific purposes. Indeed, natural materials have unique properties which come very close to perfection. Cells, for instance, are able to carry out intricate sequences of chemical reactions that are difficult or impossible to carry out ex vivo, cell membranes are the most complex selective and responsive semipermeable membranes that exist, and animal shells exhibit a clever nanostructure that renders them hard and tough at the same time. In short, materials scientists can learn a lot from nature’s materials. The perfection and performance of nature’s materials not only spark fascination, but also trigger the question as to why certain structures or surfaces exhibit outstanding properties and inspire research towards new materials. While the materials of living nature impressively serve dedicated purposes, they are formed under restricted conditions. For instance, they have to be designed to function under a narrowly defined set of physiological conditions, and can only be composed of building blocks an organism has available. Without these restrictions, material scientists can design entirely new materials or surfaces.
|
317 |
Železem funkcionalizované nanočástice oxidu titaničitého / Iron Functionalized Nanoparticles of Titanium DioxideVolfová, Lenka January 2017 (has links)
Diploma thesis Iron Functionalized Nanoparticles of Titanium Dioxide Lenka Volfová 2017, ABSTRACT Iron-functionalized TiO2 were obtained by hydrolysis of aqueous solutions of titanyl sulfate with addition of ferric nitrate with ammonium hydroxide and the reaction filtered and washed with hydrogen peroxide. The colloid solutions thus prepared were lyophilized and the products were subsequently annealed at three different temperatures of 650 řC, 800 řC and 950 řC. The prepared doped materials were characterized by powder X-ray diffractometry, electron microscopy, infrared spectroscopy, Mössbauer spectroscopy, UV/VIS spectroscopy, thermogravimetric analysis and differential thermal analysis, and measurement of the specific surface area. Photocatalytic activity was determined by measuring of the decomposition of kinetics of 4-chlorophenol in an aqueous solution in the ultraviolet and visible area. For comparison of activity in the UV area and in the visible area were used a previously prepared highly photoactive specimen and standard TiO2 from Kronos, respectively. Keywords: Doped titanium dioxide, nanostructure, X-ray diffraction, electron microscopy, Mössbauer spectroscopy, suppression of photoactivity
|
318 |
The Effect of Modified AuNPs on the Morphology and Nanostructure Orientation of PPMA-b-PMMA Block Copolymer Thin FilmsHe, Guping 06 October 2014 (has links)
Block copolymer/inorganic nanoparticle hybrids draw great attention of scientists from various areas for their potential applications in diverse fields such as microelectronics, sensors, and solar cells. Inorganic nanoparticles (NPs) can be expected to be incorporated into block copolymers with order and selectivity by self-assembly of NPs and/or by synergistic self-assembly between NPs and block copolymers. The morphology and nanostructure order of block copolymers can be also adjusted and directed by incorporation of NPs. In this study, the effect of the size and modification of AuNPs on the morphology and nanostructure orientation of block copolymer PPMA-b-PMMA thin films were systematically investigated.
The lateral BCP structure in thin films was improved by adding AuNPs. The controlled location of AuNPs in the BCP thin films depended on the particle size and stabilizing species. The re-orientation of cylindrical domains depended on the modification of AuNPs. PPMA-coated AuNPs, corresponding to the lower surface energy component of BCP, were powerful in directing the cylinders from parallel to perpendicular to the substrate. These results provide a general guide for other BCP/inorganic NP hybrid systems for desired morphology and nanostructure orientation.
|
319 |
Many-Body effects in Semiconductor NanostructuresWesslén, Carl-Johan January 2014 (has links)
Low dimensional semiconductor structures are modeled using techniques from the field of many-body atomic physics. B-splines are used to create a one-particle basis, used to solve the more complex many-body problems. Details on methods such as the Configuration Interaction (CI), Many-Body Perturbation Theory (MBPT) and Coupled Cluster (CC) are discussed. Results from the CC singles and doubles method are compared to other high-precision methods for the circular harmonic oscillator quantum dot. The results show a good agreement for the energy of many-body states of up to 12 electrons. Properties of elliptical quantum dots, circular quantum dots, quantum rings and concentric quantum rings are all reviewed. The effects of tilted external magnetic fields applied to the elliptical dot are discussed, and the energy splitting between the lowest singlet and triplet states is explored for varying geometrical properties. Results are compared to experimental energy splittings for the same system containing 2 electrons.
|
320 |
Contrast varied small-angle scattering on disordered materials using X-ray, neutron, and anomalous scatteringGericke, Eike 28 January 2022 (has links)
Schwerpunkt dieser Arbeit ist die Untersuchung der Struktur von Materialien und ihrer Entwicklung unter in situ Bedingungen. Dabei werden nanoskopische Strukturmotive in amorphen, ungeordneten und porösen Festkörpern mit Hilfe von Kleinwinkelstreuungstechniken identifiziert und quantifiziert.
Es werden drei verschiedene wissenschaftliche Fragestellungen bezüglich drei unterschiedlicher Materialsystemen diskutiert. Erstens wird die Nanostruktur von Dichtefluktuationen in hydriertem amorphen Silizium (a-Si:H) charakterisiert. In den untersuchten a-Si:H Materialien wurden zwei unterschiedliche in die a-Si:H-Matrix eingebettete Phasen identifiziert und anhand ihrer Streuquerschnitte quantifiziert. Diese neuen Ergebnisse beantworten eine seit 20 Jahren ungelöste Fragestellung über das a Si:H Material. Zweitens wird die Adsorption, Kondensation und Desorption von Xenon (Xe) in den Poren einer mesoporösen Silizium (Si) Membran untersucht. Dabei werden Xe-spezifischen Charakterisierungsmethoden eingesetzt. Die neuen Ergebnisse führen zu einem detaillierten Verständnis der Physisorption von Xe in porösem Silizium und zeigen deutliche Unterschiede zwischen Porenfüllungs- und Porenentleerungsmechanismen auf. Zuletzt wird die natürliche Alterung (NA) einer Aluminium-Magnesium-Silizium-Modelllegierung diskutiert. Die Streuexperimente weisen auf das Vorhandensein von Segregationszonen hin und unterstützen die Interpretation dieser Zonen als MgSi-Nanophasen in der Al-Matrix. / The investigation of material structures and their evolution under in situ conditions is the main focus of this work. Thereby, nanostructural motives in amorphous, disordered, and porous solids are identified and quantified using small-angle scattering techniques.
Three different scientific questions concerning three different material systems are discussed. First, the nanostructure of density fluctuations in hydrogenated amorphous silicon (a-Si:H) is evaluated and quantified. Second, the adsorption, condensation, and desorption of xenon (Xe) confined in the pores of a mesoporous silicon (Si) membrane is studied in situ using Xe-specific characterization methods. Finally, the natural aging (NA) of an aluminum-magnesium-silicon model alloy (Al-0.6Mg-0.8Si) is discussed.
|
Page generated in 0.0658 seconds