• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 76
  • 46
  • 17
  • 16
  • 15
  • 6
  • 6
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • Tagged with
  • 224
  • 47
  • 45
  • 27
  • 18
  • 15
  • 15
  • 14
  • 13
  • 12
  • 11
  • 11
  • 11
  • 11
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Labyrinth Seal Preprocessor and Post-Processor Design and Parametric Study

Mehta, Rumeet Pradeep 03 June 2008 (has links)
Vibrations caused due to aerodynamic excitation may cause severe limitation to the performance of turbomachines. The force resulting from the non-uniform pressure distribution within the labyrinth cavity is identified as a major source of this excitation. In order to perform rotor dynamic evaluation of rotor-bearing-seal system, accurate prediction of this force is essential. A visual basic based front-end, for a labyrinth seal analysis program, has been designed herein. In order to accurately predict the excitation force, proper modeling of labyrinth leak path is important. Thus, the front-end developed herein incorporates a leak-path geometric diagram for visual analysis of labyrinth leak path and tooth location. Furthermore, to investigate influence of various operating conditions and gas properties on excitation force (effective cross-coupling stiffness), a parametric study is performed on both the eye seal and the balance piston labyrinth seal. / Master of Science
82

Computational Fluid Dynamic and Rotordynamic Study on the Labyrinth Seal

Gao, Rui 02 August 2012 (has links)
The labyrinth seal is widely used in turbo machines to reduce leakage flow. The stability of the rotor is influenced by the labyrinth seal because of the driving forces generated in the seal. The working fluid usually has a circumferential velocity component before entering the seal; the ratio of circumferential velocity and shaft synchronous surface velocity is defined as pre-swirl rate. It has been observed that pre-swirl rate is an important factor affecting driving forces in the labyrinth seal thus affecting the stability of the rotor. Besides the pre-swirl, the eccentricity, the clearance, and the configuration of tooth locations are all factors affecting the rotordynamic properties of the labyrinth seal. So it is of interest to investigate the exact relationships between those factors and the seal's rotordynamic properties. In this research, three types of labyrinth seals have been modeled: the straight eye seal, the stepped eye seal, and the balance drum seal. For the straight eye seal, a series of models were built to study the influence of eccentricity and clearance. The other two seals each have only one model. All models were built with Solid Works and meshed with ANSYS-ICEM. Flows in those models were simulated by numerically solving the Reynolds-Averaged Navier-Stokes (RANS) equations in the ANSYS-CFX and then rotordynamic coefficients for each seal were calculated based on the numerical results. It had previously been very difficult to generate a pre-swirl rate higher than 60% in a numerical simulation. So three ways to create pre-swirl in ANSYS-CFX were studied and finally the method by specifying the inlet velocity ratio was employed. Numerical methods used in this research were introduced including the frame transfer, the k-ε turbulence model with curvature correction, and the scalable wall function. To obtain the optimal mesh and minimize the discretization error, a systematical grid study was conducted including grid independence studies and discretization error estimations. Some of the results were compared with previous bulk-flow or experimental results to validate the numerical model and method. The fluid field in the labyrinth seal must be analyzed before conducting rotordynamic analysis. The predicted pressure distributions and leakages were compared with bulk-flow results. A second small vortex at the downstream edge of each tooth was found in the straight eye seal. This has never been reported before and the discovery of this small vortex will help to improve seal designs in the future. The detailed flows in discharged region and in chambers were also discussed. Radial and tangential forces on the rotor were solved based on the fluid field results. It is shown that the traditional first-order rotordynamic model works well for low pre-swirl cases but does not accurately reflect the characteristics for high pre-swirl cases. For example compressor eye seals usually have pre-swirl rates bigger than 70% and the second order model is required. Thus a second-order model including inertia terms was built and applied to the rotordynamic analysis in this research. The influence of pre-swirl, eccentricity and clearance were studied using the straight eye seal model. The rotordynamic characteristics of the stepped eye seal and the balance drum seal were studied considering high pre-swirl rates. Some relationships between influencing factors and the four rotordynamic coefficients were concluded. The results also showed that for all the three seals higher pre-swirl leads to higher cross-coupled stiffness which is one of the main factors causing rotor instability. The rotor stability analysis was conducted to study the influence of drum balance seal on the stability. The rotor was designed with typical dimensions and natural frequencies for a centrifugal compressor rotor. The parameters for bearing and aerodynamic force were also set according to general case in compressors to minimize the effects from them. The result shows that the high pre-swirl rate in balance drum seal leads to rotor instability, which confirmed the significant effect of pre-swirl on the seal and the rotor system. / Ph. D.
83

Reconstitution of mouse inner ear sensory development from pluripotent stem cells

Koehler, Karl R. 01 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The inner ear contains specialized sensory epithelia that detect head movements, gravity and sound. Hearing loss and imbalance are primarily caused by degeneration of the mechanosensitive hair cells in sensory epithelia or the sensory neurons that connect the inner ear to the brain. The controlled derivation of inner ear sensory epithelia and neurons from pluripotent stem cells will be essential for generating in vitro models of inner ear disorders or developing cell-based therapies. Despite some recent success in deriving hair cells from mouse embryonic stem (ES) cells, it is currently unclear how to derive inner ear sensory cells in a fully defined and reproducible manner. Progress has likely been hindered by what is known about induction of the nonneural and preplacodal ectoderm, two critical precursors during inner ear development. The studies presented here report the step-wise differentiation of inner ear sensory epithelia from mouse ES cells in three-dimensional culture. We show that nonneural, preplacodal and pre-otic epithelia can be generated from ES cell aggregates by precise temporal control of BMP, TGFβ and FGF signaling, mimicking in vivo development. Later, in a self-guided process, vesicles containing supporting cells emerge from the presumptive otic epithelium and give rise to hair cells with stereocilia bundles and kinocilium. Remarkably, the vesicles developed into large cysts with sensory epithelia reminiscent of vestibular sense organs (i.e. the utricle, saccule and crista), which sense head movements and gravity in the animal. We have designated these stem cell-derived structures inner ear organoids. In addition, we discovered that sensory-like neurons develop alongside the organoids and form putative synapses with hair cells in a similar fashion to the hair cell-to-neuron circuit that forms in the developing embryo. Our data thus establish a novel in vitro model of inner ear organogenesis that can be used to gain deeper insight into inner ear development and disorder.
84

Borgesvirtual

de Toro, Alfonso 23 February 2015 (has links) (PDF)
Para comenzar quisiera dar una breve idea de cómo entiendo a Borges –al respecto me he manifestado en un buen número de publicaciones desde 1989, pero no sobre los motivos o puntos de arranque – y describir así cómo llegué a mi interpretación sobre Borges y a considerarlo como uno de los fundadores de la teoría de "muchos mundos" ("Many Worlds Theory"), de mundos virtuales y de medios virtuales/digitales y de los "New Media". Su escritura representa un acto de percepción, comprensión, implosión y expansión, ésta es una "encicopledia navegante", Borges es así el primer navegador o "user in the web".
85

K⁺ channels in the inner ear : electrophysiological and molecular studies /

Liang, Guihua, January 2005 (has links)
Diss. (sammanfattning) Stockholm : Karol. inst., 2005. / Härtill 5 uppsatser.
86

Labyrinth psychotica : simulating psychotic phenomena

Kanary Nikolova, Jennifer January 2016 (has links)
This thesis forms a valuable tool of analysis, as well as an important reference guide to anyone interested in communicating, expressing, representing, simulating and or imagining what it is like to experience psychotic phenomena. Understanding what it is like to experience psychotic phenomena is difficult. Those who have experience with it find it hard to describe, and those who do not have that experience find it hard to envision. Yet, the ability to understand is crucial to the interaction with a person struggling with psychotic experiences, and for this help is needed. In recent years, the psychosis simulation projects Mindstorm, Paved with Fear, Virtual Hallucinations and Living With Schizophrenia have been developed as teaching and awareness tools for mental health workers, police, students and family members, so that they can better understand psychotic phenomena. These multimedia projects aim to improve understanding of what a person in psychosis is going through. This thesis represents a journey into taking a closer look at their designs and comparing them to biographical and professional literature. In doing so, throughout the chapters, a set of considerations and design challenges have been created that need to be taken into account when simulating psychosis. After a series of artistic case study labyrinths, Suicide Pigeon, Intruder, and Intruder 2.0, two final ‘do-it-yourself-psychosis’ projects have been created that have taken the aspects collected into account: The Labyrinth and The Wearable. Together these two projects form experiences that may be considered analogous to psychotic experiences. My original contribution to knowledge lies, on the one hand, within the function that both The Labyrinth and The Wearable have on a person’s ability to gain a better understanding of what it feels like to be in psychosis, and on the other hand within the background information provided on the context and urgency of psychosis simulation, how the existing simulations may be improved, and how labyrinthine installation art may contribute to these improvements.
87

Anisotropic Mechanical Properties of the Guinea Pig Round Window Membrane

Wang, Wenbin January 2023 (has links)
Accessing the inner ear presents a significant challenge for the diagnosis and treatment of inner ear diseases. Many existing techniques to access the inner ear are invasive and can cause permanent damage to the cochlea. Recently, a novel microneedle has been fabricated to perforate the round window membrane (RWM) – a membrane sealing one of the two openings in the cochlea. These perforations enhance drug delivery into the inner ear, potentially improving the efficacy of therapeutics. Furthermore, they allow for the aspiration of perilymph samples, which is essential for diagnosing inner ear diseases. However, owing to limited knowledge about the mechanical properties of the RWM, certain technical aspects remain unexplored. Specifically, the interaction between the RWM and the microneedle during perforation is yet to be examined. This investigation is pivotal for the optimal design of microneedles — those robust enough to perforate RWMs yet delicate enough to minimize damage. In this thesis, we conduct a thorough examination of the guinea pig RWM, encompassing its geometry and its mechanical responses to pressures from the middle ear and inner ear. Additionally, we also formulate a comprehensive constitutive law for the guinea pig RWM. Our exploration begins with the creation of a U-Net model tailored to automatically segment the RWM. Despite the presence of other structures in the same image—such as bone, the basilar membrane, and ambient noise—the model proved invaluable for efficiently and automatically segmenting the RWM. To enhance accuracy, post-processing techniques like connected component analysis and majority voting were incorporated. Using this 3D model, we proceeded to study the RWM’s geometry. Recognizing the shrinkage observed in fixed RWMs, we integrated fresh RWM data to estimate the shrinkage ratio. Subsequently, we analyzed both the overall RWM thickness and that of the middle connective tissue layer—crucial metrics for future RWM modeling. Next, we proposed a method to evaluate the in-plane deformation of the RWM due to applied pressure. This involved using a bulge test system to pressurize and deform the RWM, combined with confocal microscopy to track stained nuclei or pre-introduced fluorescent beads on the RWM. We then utilized the coherent point drift (CPD) algorithm to measure the displacement of beads and nuclei. Results indicated that both markers could be successfully used to measure the RWM’s displacement. Further analysis revealed the in-plane Lagrangian strain of the RWM, with a significant observation being that the direction of maximum in-plane Lagrangian strain is perpendicular to the fiber direction. This underscores the crucial role of collagen fibers in determining the RWM’s mechanical properties. To conclude our study, we devised a constitutive law for the RWM, conceptualizing it as a combination of the ground substance and a family of dispersed fibers. This model was integrated into a FEBioStudio plugin, facilitating simulations of the RWM’s mechanical reactions to different pressures. Although our simulations closely aligned with experimental findings, some discrepancies were noted, likely stemming from an incomplete understanding of fiber dispersions. Nevertheless, our constitutive law reinforces the notion that fibers primarily govern the RWM’s mechanical characteristics.
88

Finite-element analysis of inner ear hair bundles: a parameter study of bundle mechanics

Duncan, Robert Keith 29 September 2009 (has links)
Inner ear hair cells have been identified as the sites of mechanoelectrical transduction from a mechanical event (e.g. hearing, motion) to an electrical event (e.g. neural response). Deflection of bundles of hair-like stereocilia extending from these cells has been associated with the transduction process. Stereocilia bundle structure and stiffness controls deflection and thus the fundamental sensitivity of the transduction process. The finite-element method was used along with analytical techniques to characterize individual stereocilium and stereocilia bundle stiffnesses. A three ‘stack’ bundle with a Young’s modulus of 3 GPa (F-actin protein) and Poisson’s ratio of 0.4 (nearly incompressible) resulted in a stiffness of K = 2.1 x 10⁻³ N/m. This value is within the range of experimentally determined stiffmesses. Tip-link and subapical band interconnecting structures each contribute significantly to bundle stiffness and each could act as the gating-spring in transduction models, which propose gating structures as a means of regulating ionic activity and therefore neural activity. Stiffness depends most strongly on individual stereocilium geometry and material description, tip-link orientation and material description, and stereocilia bundle width. Stiffness depends least on stereocilia height variations and subapical bands configuration. Linear analysis was reliable up to deflections of 3.5 um, the upper limit of physical response. Preliminary dynamic response indicates a natural frequency of 382 kHz for the vibration mode resembling physical deformation behavior. Future models should include hexagonal bundle arrangements, transversely isotropic stereocilia material descriptions, and viscoelastic tip-link behavior. / Master of Science
89

Analysis of abnormal craniofacial and ear development of a transgenic mutant with ectopic hoxb3 expression

Wong, Yee-man, Elaine., 王怡雯. January 2006 (has links)
published_or_final_version / abstract / Biochemistry / Doctoral / Doctor of Philosophy
90

Variation within the bony labyrinth of mammals

Ekdale, Eric Gregory 29 June 2010 (has links)
The morphological diversity of the external and internal surfaces of the petrosal bone, which contains the structures of the inner ear, across a broad range of therian mammals is documented, and patterns of variation across taxa are identified. One pattern of variation is the result of ontogenetic changes in the ear region, as described for the external surface morphology of a sample of isolated petrosal bones referred to Proboscidea from Pleistocene deposits in central Texas. The morphology of the aquaeductus Fallopii for passage of the greater petrosal branch of the facial nerve supports an ontogenetic explanation for some variation within the proboscidean sample, and a sequence of ossification surrounding the aquaeductus Fallopii is hypothesized. Further ontogenetic patterns are investigated using digital endocasts of the bony labyrinth (preserved on the internal surfaces of the petrosal) constructed from CT data across a growth series of the opossum Monodelphis domestica. Strong correlation between skull length and age is found, but from 27 days after birth onward, there is no correlation with age among most dimensions of the inner ear. Adult dimensions of several of the inner ear structures are achieved before the inner ear is functional in M. domestica. Morphological variation within the inner ear of several eutherian mammals from the Cretaceous of Asia, including zhelestids from the Bissekty Formation of Uzbekistan, is described. The variation within the fossil sample is compared to that observed within extant species of placental mammals, and it is determined that the amount of variation within the Bissekty zhelestid population is within the range of that measured for extant species. Additional evolutionary and physiological patterns preserved within the walls of the bony labyrinth are identified through a high level anatomical comparison of the inner ear cavities across Placentalia as a whole. In particular, features of the inner ear support monophyly of Cetacea, Carnivora, Primatomorpha, and caviomorph Rodentia. The volumetric percentage of the vestibular apparatus (vestibule plus semicircular canals) of aquatic mammals is smaller than that calculated for terrestrial relatives of comparable body size. Thus, aspects of the bony labyrinth are both phylogenetically and physiologically informative. / text

Page generated in 0.1168 seconds