Spelling suggestions: "subject:"langlands correspondence"" "subject:"ganglands correspondence""
1 |
On the local Langlands correspondence: New examples from the epipelagic zoneRomano, Beth January 2016 (has links)
Thesis advisor: Mark Reeder / This thesis contributes to the proof of the conjectural local Langlands correspondence in the case of small residue characteristic. Let G be an absolutely simple split reductive group over a finite extension k of ℚ_p. To each point in the Bruhat-Tits building of G(K), Moy and Prasad have attached a filtration of G(K) by bounded subgroups. In the first main result of this thesis we give necessary and sufficient conditions for the first Moy-Prasad filtration quotient to have stable functionals for the action of the reductive quotient (this result is joint with Jessica Fintzen). Our work extends earlier results by Reeder and Yu, who gave a classification in the case when p is sufficiently large. By passing to a finite unramified extension of k if necessary, we obtain new supercuspidal representations of G(k) when p is small. Next we consider G = G₂. For this case we explicitly describe the locus of stable functionals on the first Moy-Prasad filtration quotient for every point in the Bruhat-Tits building. Our description is in terms of the invariant theory of SL₂ x SL₂. This allows us to construct a previously unknown representation π of G₂(ℚ₂) using the construction of Reeder-Yu. We then prove that there exists a unique Langlands parameter that satisfies the local degree conjecture of Hiraga, Ichino, and Ikeda with respect to π. We give an explicit construction of this parameter. / Thesis (PhD) — Boston College, 2016. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Mathematics.
|
2 |
The projective envelope of a cuspidal representation of a GL[subscript n](F[subscript q])Paige, David Lee 26 October 2012 (has links)
Let l be a prime and let q be a prime power not divisible by l. Put G=GI[subscript n](F[subscript q])and fix a representation pi of G over a sufficiently large finite field, k, of characteristic l, so that pi is cuspidal but not supercuspidal. We compute the W(k)[G]-endomorphism ring of the projective envelope of pi under the assumption that l>n. / text
|
3 |
Local Langlands Correpondence for the twisted exterior and symmetric square epsilon-factors of GL(N)Dongming She (8782541) 02 May 2020 (has links)
In this paper, we prove the equality of the local arithmetic and analytic epsilon- and L-factors attached to the twisted exterior and symmetric square representations of GL(N). We will construct the twisted symmetric square local analytic gamma- and L-factor of GL(N) by applying Langlands-Shahidi method to odd GSpin groups. Then we reduce the problem to the stablity of local coefficients, and eventually prove the analytic stabitliy in this case by some analysis on the asymptotic behavior of certain partial Bessel functions.
|
4 |
On the uniqueness of generic representations in an L-packet / L-パケットの中の生成的表現の一意性についてAtobe, Hiraku 23 March 2017 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第20150号 / 理博第4235号 / 新制||理||1609(附属図書館) / 京都大学大学院理学研究科数学・数理解析専攻 / (主査)准教授 市野 篤史, 教授 雪江 明彦, 教授 池田 保 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
|
5 |
Centre de Bernstein stable et conjecture d'Aubert-Baum-Plymen-Solleveld / Stable Bernstein center and Aubert-Baum-Plymen-Solleveld conjectureMoussaoui, Ahmed 16 June 2015 (has links)
Cette thèse s'intéresse aux liens entre la correspondance de Langlands locale et le centre de Bernstein. Pour cela, un cadre a été introduit par Vogan puis développé par Haines : le centre de Bernstein stable. Nous commençons par étendre la correspondance de Springer généralisée au groupe (non connexe) orthogonal. Ensuite, nous énonçons une conjecture concernant les paramètres de Langlands (complets) des représentations supercuspidales d'un groupe p-adique déployé que nous vérifions pour les groupes classiques et le groupe linéaire à l'aide des travaux de Moeglin, Henniart et Harris et Taylor. Nous définissons à l'aide des travaux de Lusztig sur la correspondance de Springer généralisée une application de support cuspidal pour les paramètres de Langlands complets. Avec certains résultats d'Heiermann, nous obtenons un paramétrage de Langlands des représentations irréductibles d'un groupe classique. Par ailleurs, nous énonçons une conjecture « galoisienne » analogue à la conjecture d'Aubert-Baum-Plymen-Solleveld, que nous prouvons à l'aide des résultats précédents. Ceci est une nouvelle preuve de la validité de la conjecture ABPS pour les groupes classiques et explicite ses relations avec la correspondance de Langlands. En conséquence, on obtient la compatibilité de la correspondance de Langlands avec l'induction parabolique pour les groupes classiques. / This thesis focus on links between the local Langlands correspondence and the Bernstein center. A framework was introduced by Vogan and developed by Haines : the stable Bernstein center. We start by extending the generalized Springer correspondence to the orthogonal group (which is disconnected). Then we state a conjecture about (complete) Langlands parameters of supercuspidal representations of a p-adic split group and we prove it for classical and linear groups thanks to the work of M\oe glin, Henniart and Harris and Taylor. Based on the work of Lusztig on generalized Springer correspondence, we define a cuspidal support map for complete Langlands parameters. Referring to some results of Heiermann, we get a Langlands parametrization of the smooth dual of classical groups. Moreover, we state "Galois" version of the Aubert-Baum-Plymen-Solleveld conjecture and we prove that with the previous results. It gives a new proof of the validity of the ABPS conjecture for classical groups and it provides explicit relations with Langlands correspondence. As a corrolary, we obtain the compatibility of the Langlands correspondence with parabolic induction for classical groups.
|
6 |
Local Langlands Correspondence for Asai L and Epsilon FactorsDaniel J Shankman (8797034) 05 May 2020 (has links)
Let E/F be a quadratic extension of p-adic fields. The local Langlands correspondence establishes a bijection between n-dimensional Frobenius semisimple representations of the Weil-Deligne group of E and smooth, irreducible representations
of GL(n, E). We reinterpret this bijection in the setting of the Weil restriction of
scalars Res(GL(n), E/F), and show that the Asai L-function and epsilon factor on
the analytic side match up with the expected Artin L-function and epsilon factor on
the Galois side.
|
7 |
P-adic local Langlands correspondence and geometry / Langlands p-adique : géometrie et programmeChojecki, Przemyslaw 16 January 2015 (has links)
Cette these concerne la geometrie de la correspondance de Langlands p-adique. On donne la formalisation des methodes de Emerton, qui permettrait d'etablir la conjecture de Fontaine-Mazur dans le cas general des groupes unitaires. Puis, on verifie que ce formalism est satisfait dans la cas de U(3) ou on utilise la construction de Breuil-Herzig pour la correspondence p-adique. De point de vue local, on commence l'etude de cohomologie modulo p et p-adiques de tour de Lubin-Tate pour GL_2(Q_p). En particulier, on demontre que on peut retrouver la correspondence de Langlands p-adique dans la cohomologie completee de tour de Lubin-Tate. / This thesis concerns the geometry behind the p-adic local Langlands correspondence. We give a formalism of methods of Emerton, which would permit to establish the Fontaine-Mazur conjecture in the general case for unitary groups. Then, we verify that our formalism works well in the case of U(3) where we use the construction of Breuil-Herzig as the input for the p-adic correspondence.From the local viewpoint, we start a study of the modulo p and p-adic cohomology of the Lubin-Tate tower for GL_2(Q_p). In particular, we show that we can find the local p-adic Langlands correspondence in the completed cohomology of the Lubin-Tate tower.
|
8 |
Autour des représentations modulo p des groupes réductifs p-adiques de rang 1 / Mod p representations of p-adic reductive groups of rank 1Abdellatif, Ramla 02 December 2011 (has links)
Soit p un nombre premier. Cette thèse est une contribution à la théorie des représentations modulo p des groupes réductifs p-adiques, jusque là essentiellement centrée sur le groupe linéaire général GL(n) défini sur un corps local non archimédien F complet pour une valuation discrète, de caractéristique résiduelle p et de corps résiduel fini. L’originalité de nos travaux réside notamment dans le fait qu’ils concernent d’autres groupes : nous nous intéressons en effet à la description des classes d’isomorphisme des représentations modulo p de groupes formés des F-points d’un groupe réductif connexe défini, quasi-déployé de rang semi-simple égal à 1 sur F. Une place particulière est accordée au groupe spécial linéaire SL(2) et au groupe unitaire quasi-déployé non ramifié en trois variables U(2,1). Dans ces deux cas, nous montrons que les classes d’isomorphisme des représentations lisses irréductibles admissibles à coefficients dans un corps algébriquement clos de caractéristique p se scindent en deux familles : les représentations non supersingulières et les représentations supersingulières. Nous décrivons complètement les représentations non supersingulières, et montrons que la notion de supersingularité est équivalence à la notion de supercuspidalité apparaissant dans la théorie complexe. Nous donnons aussi une description explicite des représentations supersingulières de SL(2,Q_{p}), ce qui nous permet de définir dans ce cas une correspondance de Langlands locale semi-simple modulo p compatible à celle construite par Breuil pour GL(2). Nous généralisons ensuite les méthodes utilisées jusqu’alors pour obtenir la description des représentations non supercuspidales de G(F) lorsque G est un groupe réductif connexe défini, quasi-déployé, et rang semi-simple égal à 1 sur F. Elle fait apparaître trois familles deux à deux disjointes de représentations : les caractères, les représentations de la série principale et celles de la série spéciale. Nous terminons par une classification des modules à droite simples sur la pro-p-algèbre de Hecke-Iwahori H de SL(2,F). On déduit en particulier que l’application qui envoie une représentation lisse modulo p de SL(2,F) sur son espace de vecteurs invariants sous l’action du pro-p-sous-groupe d'Iwahori induit une bijection entre l’ensemble des classes d’isomorphisme des représentations lisses irréductibles non supersingulières de SL(2,F) et l’ensemble des classes d’isomorphisme des H-modules à droite simples non supersinguliers. Cette bijection s’étend aux objets supersinguliers lorsque l’on suppose que F = Q_{p}, ce qui est de bon augure dans la recherche d’une équivalence de catégories analogue à celle obtenue par Ollivier dans le cadre de la théorie existant pour GL(2, Q_{p}). / Let p be a prime number. This thesis is a contribution to the theory of mod p representations of p-adic reductive groups, which was until now mainly focused on the general linear group GL(n) defined over a non-archimedean local field F complete with respect to a discrete valuation and with finite residue class field of characteristic p. Our work is original as it deals with other groups : we indeed look for a classification of isomorphism classes of modulo p representations of groups formed by the F-points of a connected reductive group defined, quasi-split and of semi-simple rank 1 over F. A special place is devoted to the special linear group SL(2) and to the unramified quasi-split unitary group. In these two cases, we prove that the isomorphism classes of irreducible smooth representations over an algebraically closed field of characteristic p split into two families : supersingular and non-supersingular representations. We give a complete description of non-supersingular representations and prove that supersingularity is equivalent to the notion of supercuspidality that appears in the complex theory. We also make explicit the supersingular representations of SL(2,Q_{p}), what allows us to define a mod p semi-simple local Langlands correspondence that is compatible to the one built by Breuil for GL(2). We then generalize the methods used above to classify the isomorphism classes of non-supercuspidal representations of G(F) for G a connected reductive group which is defined, quasi-split and of semi-simple rank 1 over F. This classification is made up of three pairwise disjoint families : characters, representations of the principal series, and representations of the special series. We finally come back to SL(2) as we give an exhaustive classification of isomorphism classes of simple right modules on the pro-p-Iwahori-Hecke algebra H of SL(2,F). It implies that the map sending a smooth mod p representation of SL(2,F) on its vector space of invariants vectors under the action of the pro-p-Iwahori subgroup induces a bijection between non-supersingular irreducible smooth representations of SL(2,F) and non-supersingular simple right H-modules. This bijection extends to supersingular objects when F = Q_{p}, what is the first step in the search for an equivalence of categories similar to the one built by Ollivier in the setting of mod p representations of GL(2, Q_{p}).
|
9 |
Correspondance de Jacquet-Langlands et distinction / Jacquet-Langlands correspondence and distinguishnessConiglio-Guilloton, Charlène 11 July 2014 (has links)
Soit K/F une extension quadratique modérément ramifiée de corps locaux non archimédiens. Soit GLm (D) une forme intérieure de GLn (F) et GLμ (∆) = (Mm (D) ⊗ K)× . Alors GLμ (∆) est une forme intérieure de GLn (K), les quotients GLμ (∆)/GLm (D) et GLn (K)/GLn (F) sont des espaces symétriques. En utilisant la paramétrisation de Silberger et Zink, nous déterminons des critères de GLm (D)-distinction pour les cuspidales de niveau 0 de GLμ (∆), puis nous prouvons qu’une cuspidale de niveau 0 de GLn (K) est GLn (F)-distinguée si et seulement si son image par la correspondance de Jacquet-Langlands est GLm (D)-distinguée. Puis, dans le cas particulier où μ = 2 et m = 1, nous regardons le cas des séries discrètes de niveau 0 non cuspidales, en utilisant le système de coefficients sur l’immeuble associé à la représentation, donné par Schneider et Stuhler. / Let K/F be a tamely ramified quadratic extension of non-archimedean locally compact fields. Let GLm (D) be an inner form of GLn (F) and GLμ (∆) = (Mm (D)⊗K)× . Then GLμ (∆) is an inner form of GLn (K), the quotients GLμ (∆)/GLm (D) and GLn (K)/GLn (F) are symmetric spaces. Using the parametrization of Silberger and Zink, we determine conditions of GLm (D)-distinction for level zero cuspidal representations of GLμ (∆). We also show that a level zero cuspidal representation of GLn (K) is GLn (F)-distinguished if and only if its image by the Jacquet-Langlands correspondence is GLm (D)-distinguished. Then, we treat the case of level zero non supercuspidal representations when μ = 2 and m = 1 using the coefficient system of the Bruhat-Tits building associated to the representation by Schneider and Stuhler.
|
10 |
Analyse p-adique et complétés unitaires universels pour GL₂(F) / p-adic analysis and universal unitary completion for GL₂(F)De Ieso, Marco 11 December 2012 (has links)
Soit p un nombre premier. Les résultats de cette thèse s'inscrivent dans le cadre du programme de Langlands p-adique. Lorsque V est une représentation p-adique de dimension 2 du groupe Gal(\bar{Qp}/Qp), on sait lui associer une représentation p-adique continue B(V) de GL₂(Qp). Si F est une extension finie non triviale de Qp, la question d'associer des représentations p-adiques de GL₂(F) aux représentations p-adiques de dimension 2 de Gal(\bar{Qp}/F) dans l'esprit d'une correspondance locale à la Langlands s'annonce beaucoup plus délicate. Dans ce texte, nous considérons des espaces de Banach p-adiques, munis d'une action linéaire continue de GL₂(F), qui sont des complétions unitaires universelles de certaines représentations localement Qp-analytiques de GL₂(F). Celles-ci sont susceptibles de jouer un rôle important dans une éventuelle correspondance de Langlands locale p-adique pour GL₂(F). Le résultat principal de cette thèse est démontré dans le Chapitre 3 et généralise des résultats antérieurs de Berger et Breuil. Il consiste en une description explicite de ces complétés unitaires universels à l'aide des fonctions continues sur F d'un certain type. Pour ce faire, nous introduisons dans le Chapitre 2 des espaces de Banach de fonctions de classe C^r, où r est un nombre rationnel positif, et leurs espaces duaux de distributions d'ordre r. Nous construisons une base de Banach et nous donnons un critère de prolongement des formes linéaires définies sur un espace de fonctions localement Qp-polynomiales en distributions d'ordre r. Ce faisant, nous généralisons des résultats classiques dus à Amice-Vélu et Vishik. Dans le Chapitre 4, nous exhibons des cas de non nullité pour les complétions unitaires universelles considérées par construction explicite de réseaux invariants. Cela donne de nouveaux cas de la conjecture proposée par Breuil et Schneider sur l'équivalence entre l'existence de normes invariantes sur certaines représentations localement algébriques de GL_d(F) et l'existence de certaines représentations de de Rham de Gal(\bar{Qp}/F). / Let p be a prime. The subject of this thesis is the p-adic Langlands correspondence. If V is a p-adic representation of dimension 2 of the group Gal(\bar{Qp}/Qp), it is known how to associate to it a continuous p-adic representation B(V) of GL₂(Qp). If F is a non-trivial finite extension of Qp, the issue of associating p-adic representations of GL₂(F) to p-adic representations of dimension 2 of Gal(\bar{Qp}/F) in the spirit of a local Langlands correspondence appears much more delicate. In this text we consider a class of p-adic Banach spaces, endowed with a continuous linear action of GL₂(F), which are obtained as universal unitary completions of certain locally Qp-analytic representations of GL₂(F). Such representations are likely to play an important role in a future local p-adic Langlands correspondence for GL₂(F). The main result of this thesis is proved in Chapter 3 and generalizes some previous results of Berger and Breuil. It consists in an explicit description of these universal unitary completions by means of a certain class of continuous functions on F. In order to do this, we introduce in Chapter 2 a class of Banach spaces of functions of class C^r, where r is a positive rational number, as well as their dual spaces of distributions of order r. We build a Banach base and we give a criterion for telling when a linear form defined on a space of locally Qp-polynomial functions extends to a distribution of order r. As a consequence, we generalize some classical results due to Amice-Vélu and Vishik. In Chapter 4 we exhibit cases of non-nullity for these universal unitary completions, by an explicit construction of invariant lattices. This also provides new instances of the Breuil-Schneider conjecture about the equivalence between the existence of invariant norms on certain locally algebraic representations of GL_d(F) and the existence of certain De Rham representations of Gal(\bar{Qp}/F).
|
Page generated in 0.0975 seconds