• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 3
  • 2
  • Tagged with
  • 20
  • 20
  • 20
  • 8
  • 8
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Uniform Estimates of the Resolvent of the Laplace--Beltrami Operator on Infinite Volume Riemannian Manifolds with Cusps.II

vodev@math.univ-nantes.fr 18 June 2001 (has links)
No description available.
2

Practicality of Discrete Laplace Operators

Thangudu, Kedarnath 27 August 2009 (has links)
No description available.
3

Homogenization of Rapidly Oscillating Riemannian Manifolds

Hoppe, Helmer 12 April 2021 (has links)
In this thesis we study the asymptotic behavior of bi-Lipschitz diffeomorphic weighted Riemannian manifolds with techniques from the theory of homogenization. To do so we re-interpret the problem as different induced metrics on one reference manifold. Our analysis is twofold. On the one hand we consider second-order uniformly elliptic operators on weighted Riemannian manifolds. They naturally emerge when studying spectral properties of the Laplace-Beltrami operator on families of manifolds with rapidly oscillating metrics. We appeal to the notion of H-convergence introduced by Murat and Tartar. In our first main result we establish an H-compactness result that applies to elliptic operators with measurable, uniformly elliptic coefficients on weighted Riemannian manifolds. We further discuss the special case of locally periodic coefficients and study the asymptotic spectral behavior of Euclidean submanifolds with rapidly oscillating geometry. On the other hand we study integral functionals featuring non-convex integrands with non-standard growth on the Euclidean space in a stochastic framework. Our second main result is a Γ-convergence statement under certain assumptions on the statistics of their integrands. Such functionals provide a tool to study the Dirichlet energy on non-uniformly bi-Lipschitz diffeomorphic manifolds. We show Mosco-convergence of the Dirichlet energy and deduce conditions for the spectral behavior of weighted Riemannian manifolds with locally oscillating random structure, especially in the case of Euclidean submanifolds.:Introduction Outline Notation I. Preliminaries 1. Convergence of Riemannian Manifolds 1.1. Hausdorff-Convergence 1.2. Gromov-Hausdorff-Convergence 1.3. Spectral Convergence 1.4. Mosco-Convergence 2. Homogenization 2.1. Periodic Homogenization 2.2. Stochastic Homogenization II. Uniformly bi-Lipschitz Diffeomorphic Manifolds 3. Uniformly Elliptic Operators on a Riemannian Manifold 3.1. Setting 3.2. Main Results 3.3. Strategy of the Proof and Auxiliary Results 3.4. Identi cation of the Limit via Local Coordinate Charts 3.5. Examples 3.6. Proofs 4. Application to Uniformly bi-Lipschitz Diffeomorphic Manifolds 4.1. Setting and Results 4.2. Examples 4.3. Proofs III. Rapidly Oscillating Random Manifolds 5. Integral Functionals with Non-Uniformal Growth 5.1. Setting 5.2. Main Results 5.3. Strategy of the Proof and Auxiliary Results 5.4. Proofs 6. Application to Rapidly Oscillating Riemannian Manifolds 6.1. Setting and Results 6.2. Examples 6.3. Proofs Summary and Discussion Bibliography List of Figures
4

A Class of Toeplitz Operators in Several Variables

Fedchenko, Dmitry, Tarkhanov, Nikolai January 2013 (has links)
We introduce the concept of Toeplitz operator associated with the Laplace-Beltrami operator on a compact Riemannian manifold with boundary. We characterise those Toeplitz operators which are Fredholm, thus initiating the index theory.
5

Clément-type interpolation on spherical domains - interpolation error estimates and application to a posteriori error estimation

Apel, Thomas, Pester, Cornelia 31 August 2006 (has links) (PDF)
In this paper, a mixed boundary value problem for the Laplace-Beltrami operator is considered for spherical domains in $R^3$, i.e. for domains on the unit sphere. These domains are parametrized by spherical coordinates (\varphi, \theta), such that functions on the unit sphere are considered as functions in these coordinates. Careful investigation leads to the introduction of a proper finite element space corresponding to an isotropic triangulation of the underlying domain on the unit sphere. Error estimates are proven for a Clément-type interpolation operator, where appropriate, weighted norms are used. The estimates are applied to the deduction of a reliable and efficient residual error estimator for the Laplace-Beltrami operator.
6

Geometrical aspects of statistical learning theory

Hein, Matthias. Unknown Date (has links)
Techn. University, Diss., 2005--Darmstadt.
7

The Laplace and the linear elasticity problems near polyhedral corners and associated eigenvalue problems

Meyer, Arnd, Pester, Cornelia 01 September 2006 (has links) (PDF)
The solutions to certain elliptic boundary value problems have singularities with a typical structure near polyhedral corners. This structure can be exploited to devise an eigenvalue problem whose solution can be used to quantify the singularities of the given boundary value problem. It is necessary to parametrize a ball centered at the corner. There are different possibilities for a suitable parametrization; from the numerical point of view, spherical coordinates are not necessarily the best choice. This is why we do not specify a parametrization in this paper but present all results in a rather general form. We derive the eigenvalue problems that are associated with the Laplace and the linear elasticity problems and show interesting spectral properties. Finally, we discuss the necessity of widely accepted symmetry properties of the elasticity tensor. We show in an example that some of these properties are not only dispensable, but even invalid, although claimed in many standard books on linear elasticity.
8

A residual a posteriori error estimator for the eigenvalue problem for the Laplace-Beltrami operator

Pester, Cornelia 06 September 2006 (has links) (PDF)
The Laplace-Beltrami operator corresponds to the Laplace operator on curved surfaces. In this paper, we consider an eigenvalue problem for the Laplace-Beltrami operator on subdomains of the unit sphere in $\R^3$. We develop a residual a posteriori error estimator for the eigenpairs and derive a reliable estimate for the eigenvalues. A global parametrization of the spherical domains and a carefully chosen finite element discretization allows us to use an approach similar to the one for the two-dimensional case. In order to assure results in the quality of those for plane domains, weighted norms and an adapted Clément-type interpolation operator have to be introduced.
9

The height of compact nonsingular Heisenberg-like Nilmanifolds

Boldt, Sebastian 13 March 2018 (has links)
Die vorliegende Arbeit beschäftigt sich mit der Höhe (-log Determinante) kompakter nicht-singulärer heisenbergartiger Nilmannigfaltigkeiten. Heisenbergartige Nilmannigfaltigkeiten sind Verallgemeinerungen von Heisenbergmannigfaltigkeiten, d.h., kompakter Quotienten der Heisenberg-Gruppe, ausgestattet mit einer linksinvarianten Metrik. Zunächst werden explizite Formeln für die spektrale Zeta-Funktion und die Höhe bewiesen. Mithilfe dieser Formeln werden im Weiteren mehrere Resultate zur Existenz unterer Schranken/Minima der Höhe auf verschiedenen Moduli bewiesen. Zum Beispiel ist die Höhe stets von unten beschränkt, wenn man nur Metriken vom Heisenberg-Typ und mit Volumen 1 auf einer gegebenen Nilmannigfaltigkeit betrachtet. Im Gegensatz dazu hängt die Existenz unterer Schranken für die Höhe auf dem Modulraum der heisenbergartigen Metriken mit Volumen 1 von der Dimension Modulo 4 der zugrundeliegenden Mannigfaltigkeit ab. Im letzten Abschnitt werden konkrete Minima der Höhe behandelt. Wir zeigen, dass gewisse 3-, 5-, 9- und 25-dimensionale Nilmannigfaltigkeiten vom Heisenberg-Typ lokale Minima sind. Diese stehen in Zusammenhang mit den Minima der Höhe flacher Tori in der jeweiligen Dimension minus 1. Zum Abschluss werden diejenigen linksinvarianten Metriken charakterisiert, an denen die Höhe ein globales Minimum auf einer gegebenen dreidimensionalen Nilmannigfaltigkeit annimmt, indem sie zur Höhe flacher 2-dimensionaler Tori in Bezug gesetzt werden. / This thesis deals with the height (-log determinant) of compact nonsingular Heisenberg-like nilmanifolds. Heisenberg-like nilmanifolds are generalisations of Heisenberg manifolds, i.e., compact quotients of the Heisenberg group endowed with a left invariant metric. First, an explicit formula for the spectral zeta-function and the height is proved. By means of these formulas, several results concerning the existence of lower bounds/minima for the height on different moduli are proved. For example, while the height is always bounded from below when one considers only volume normalised Heisenberg-type metrics on a fixed nilmanifold, the existence of lower bounds for the height on the moduli space of volume normalised Heisenberg-like metrics depends on the dimension modulo 4 of the underlying nilmanifold. In the last part, we consider concrete minima of the height on Heisenberg manifolds. We show that certain 3-, 5-, 9- and 25-dimensional Heisenberg-type nilmanifolds are (local) minima for the height. These nilmanifolds are related to the minima of the height of flat tori in dimensions one less. Finally, the left invariant metrics at which the height attains a global minimum on any three-dimensional nilmanifold are characterised by relating them to the height of flat 2-dimensional tori.
10

Opérateur de Laplace–Beltrami discret sur les surfaces digitales / Discrete Laplace--Beltrami Operator on Digital Surfaces

Caissard, Thomas 13 December 2018 (has links)
La problématique centrale de cette thèse est l'élaboration d'un opérateur de Laplace--Beltrami discret sur les surfaces digitales. Ces surfaces proviennent de la théorie de la géométrie discrète, c’est-à-dire la géométrie qui s'intéresse à des sous-ensembles des entiers relatifs. Nous nous plaçons ici dans un cadre théorique où les surfaces digitales sont le résultat d'une approximation, ou processus de discrétisation, d'une surface continue sous-jacente. Cette méthode permet à la fois de prouver des théorèmes de convergence des quantités discrètes vers les quantités continues, mais aussi, par des analyses numériques, de confirmer expérimentalement ces résultats. Pour la discrétisation de l’opérateur, nous faisons face à deux problèmes : d'un côté, notre surface n'est qu'une approximation de la surface continue sous-jacente, et de l'autre côté, l'estimation triviale de quantités géométriques sur la surface digitale ne nous apporte pas en général une bonne estimation de cette quantité. Nous possédons déjà des réponses au second problème : ces dernières années, de nombreux articles se sont attachés à développer des méthodes pour approximer certaines quantités géométriques sur les surfaces digitales (comme par exemple les normales ou bien la courbure), méthodes que nous décrirons dans cette thèse. Ces nouvelles techniques d'approximation nous permettent d'injecter des informations de mesure sur les éléments de notre surface. Nous utilisons donc l'estimation de normales pour répondre au premier problème, qui nous permet en fait d'approximer de façon précise le plan tangent en un point de la surface et, via une méthode d'intégration, palier à des problèmes topologiques liées à la surface discrète. Nous présentons un résultat théorique de convergence du nouvel opérateur discrétisé, puis nous illustrons ensuite ses propriétés à l’aide d’une analyse numérique de l’opérateur. Nous effectuons une comparaison détaillée du nouvel opérateur par rapport à ceux de la littérature adaptés sur les surfaces digitales, ce qui nous permet, au moins pour la convergence, de montrer que seul notre opérateur possède cette propriété. Nous illustrons également l’opérateur via quelques unes de ces applications comme sa décomposition spectrale ou bien encore le flot de courbure moyenne / The central issue of this thesis is the development of a discrete Laplace--Beltrami operator on digital surfaces. These surfaces come from the theory of discrete geometry, i.e. geometry that focuses on subsets of relative integers. We place ourselves here in a theoretical framework where digital surfaces are the result of an approximation, or discretization process, of an underlying smooth surface. This method makes it possible both to prove theorems of convergence of discrete quantities towards continuous quantities, but also, through numerical analyses, to experimentally confirm these results. For the discretization of the operator, we face two problems: on the one hand, our surface is only an approximation of the underlying continuous surface, and on the other hand, the trivial estimation of geometric quantities on the digital surface does not generally give us a good estimate of this quantity. We already have answers to the second problem: in recent years, many articles have focused on developing methods to approximate certain geometric quantities on digital surfaces (such as normals or curvature), methods that we will describe in this thesis. These new approximation techniques allow us to inject measurement information into the elements of our surface. We therefore use the estimation of normals to answer the first problem, which in fact allows us to accurately approximate the tangent plane at a point on the surface and, through an integration method, to overcome topological problems related to the discrete surface. We present a theoretical convergence result of the discretized new operator, then we illustrate its properties using a numerical analysis of it. We carry out a detailed comparison of the new operator with those in the literature adapted on digital surfaces, which allows, at least for convergence, to show that only our operator has this property. We also illustrate the operator via some of these applications such as its spectral decomposition or the mean curvature flow

Page generated in 0.0993 seconds