• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 67
  • 35
  • 11
  • 7
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 164
  • 164
  • 157
  • 82
  • 80
  • 48
  • 42
  • 41
  • 32
  • 31
  • 28
  • 27
  • 26
  • 24
  • 23
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Vývoj procesních parametrů technologie Selective laser melting pro výrobu tenkostěnných dílů z práškového železa / Development of process parameters of Selective laser melting technology for the production of thin-walled iron parts

Šreibr, Vít January 2018 (has links)
The thesis deals with the processing of pure iron by Selective laser melting technology as a material with good electromagnetic properties. The main area is the optimization of the production of thin-walled samples, which monitor the influence of process parameters on the thickness and quality of the wall surfaces. In addition to the perpendicular walls, walls built at an angle of 45° are also examined. Another phase of the thesis is the determination of process parameters for bulk bodies to achieve the lowest porosity and high surface quality. An important part of the research is the application of acquired knowledge in the production of samples designed to test magnetic properties as well as part for a specific application. These considerations concern not only the setting of the printing parameters, but also the heat treatment and its influence on the magnetic and mechanical properties of the material. Mechanical properties were determined by tensile tests and hardness tests. All samples were made on a SLM 280HL using a 400W ytterbium laser.
72

Konstrukce nanášecího systému pro zpracování dvou kovových prášků pomocí 3D tisku / Design of recoating system for processing of two metal powders using 3D Printing

Guráň, Radoslav January 2019 (has links)
The thesis deals with the design, construction and testing of two different metal powder coating equipment, which is able to work with SLM 280HL metal 3D printer. Since the field of multimaterial metal printing by selective laser melting (SLM) has not been significantly investigated yet, an overview of existing patents and possible approaches to the solution has been developed. The device has been successfully designed and a series of tests was carried out defining the issue of applying an improved head that uses a nozzle and an eccentric vibration motor. Based on the experiments performed, the coating parameters of the multimaterial layer of FeAm and 316L materials were defined. A control system for the partial process automation was created for the proposed device. The device was implemented in a printer that demonstrated both the ability to apply a single multimaterial layer of at least 50 m thickness, and the ability to produce a 3D multimaterial component comprised of up to 200 layers and containing material change across all axes.
73

Návrh aditivně vyráběného tepelného výměníku olej-voda pro formuli student / Design of additively manufactured oil-water heat exchanger for formula student

Březina, Josef January 2019 (has links)
Diploma thesis deals with a design and manufacture of oil cooler by technology Selective Laser Melting for Formula Student. The main goal of the design is to ensure optimal oil circuit cooling at a minimal mass. The design of manufactured oil cooler is based on a plate heat exchanger concept with optimized intakes by CFD simulations and heat exchange body with fins of thickness 0.17 mm. An analytical model was created. SLM process parameters were optimized for a thin walls printing, Subsequently, a fabrication of testing parts was finished for measuring pressure drops and performances of micro heat exchangers. Results were used for an accuracy improvement of the analytical model and for consequent optimization of heat exchange surface. Afterwards optimization was executed for inlets and outlets by using flow simulations. A prototype was built and verified on a test stand. Performance of the designed oil cooler is 4.5 kW for race mode, where temperature drop of oil circuit is 22 °C. The lightweight design weighs 320 g, which reduces more than 47 % of a current oil-air cooler weight. Furthermore, a centre of gravity is decreased by designed placement of the cooler.
74

Mechanické vlastnosti materiálů připravovaných pomocí procesu SLM / Mechanical properties of materials prepared by SLM process

Nopová, Klára January 2019 (has links)
The final thesis determined the properties of alloys formed from mixtures of powders processed by the SLM method. Powders of alloy AlSi12 and EN AW 2618 were fused in the proportion 75 wt. % AlSi12 + 25 wt. % 2618, 50 wt. % AlSi12 + 50 wt. % 2618 and 25 wt. % AlSi12 + 75 wt. % 2618. Metallographic analysis, EBSD analysis and line EDS microanalysis were made on the samples. Tensile test at room temperature and hardness were carried out to determine the mechanical properties. Fractographic analysis was performed after tensile test.
75

Konstrukční optimalizace dílu pro tepelný spínač / Structural optimization of the heat switch part

Zemek, Albert January 2020 (has links)
This diploma thesis deals with the design of a structure for heat transfer path of miniaturized heat switch. The focus is on production using SLM additive technology. The aim is to assess the possibilities of using metal 3D printing on a part intended primarily for heat transfer. This work presents several concepts of structure arrangement, which are further analysed and evaluated. The results show the potential of additive technologies in this area and the proposed structures meet the heat transfer requirement according to the calculations used.
76

Vývoj SLM procesních parametrů pro tenkostěnné díly z niklové superslitiny / Development of SLM process parameters for thin-walled nickel superalloy components

Kafka, Richard January 2021 (has links)
The diploma thesis deals with the development of process parameters of SLM technology for the material IN718. The main goal is an experimental development of a set of parameters for the production of thin-walled parts with regard to material density, surface roughness and tightness. The essence of the development of parameters is an experimental explanation of the influence of laser power and scanning speed on the morphology of single tracks, which are used for the production of a thin wall. Together with walls of larger widths and volume samples, it is possible to create an intersection of parameters by which is possible to create components formed by a combination of thin-walled and volume geometry. The performed research created a material set, where the parameters of thin walls are used for the area of contours of bulk samples. We managed to produce a wall with an average width of 0.15 mm and roughness of 6 m, which meets the requirement for the tightness. The meander scanning pattern achieved a relative material density of 99.92%, which is more than with the supplier's parameters. Based on the acquired knowledge, it was possible to apply a set of parameters to components combining both geometries.
77

Selektives Laserstrahlschmelzen von Titanaluminiden und Stahl

Löber, Lukas 04 February 2015 (has links)
Diese Arbeit beschäftigt sich mit den aktuell bestehenden Herausforderungen der Technologie der additiven Fertigung in Form des selektiven Laserstrahlschmelzen (SLM). Es soll sich mit den Aspekten des Leichtbaus beim SLM-Verfahren beschäftigt werden. Dies geschieht mit zwei theoretischen Lösungsansätzen zur Gewichtsreduzierung von Bauteilen: 1. der Einsatz von Werkstoffen geringerer Dichte oder von neuen hochfesten Werkstoffen; 2. neue Bauweisen durch neue Konstruktions- und Werkstoffaufbauprinzipien. Praktisch erfolgt der erste Ansatz durch die Entwicklung von Prozessparametern und deren Einfluss auf das Gefüge von - für das SLM-Verfahren - neuen Leichtbauwerkstoffen, den Titanaluminiden (TiAl). Aus der großen Spanne von verschiedenen TiAl-Legierungen wurden für diese Arbeit folgende Vertreter Ti38,87Al43,67Nb4,08Mo1,02B0,1 und Ti48Al48Cr2Nb2 aufgrund ihres guten Eigenschaftsspektrums und der unterschiedlichen Erstarrungsvoränge gewählt. Aufgrund der hohen Anzahl von Einflussgrößen sollen verschiedene Ansätze, wie statistische Versuchspläne oder Einzelbahncharakterisierungen, verfolgt werden, um eine effiziente und schnelle Parameteroptimierung zu erzielen. Der zweite Ansatz verfolgt die Herstellung verschiedener Gitterstrukturen aus 1.4404-Stahl (X2CrNiMo 17-12-2). Durch das Fertigen von Gittern mit verschiedenen relativen Dichten, was über eine Variation der Durchmesser der Streben erreicht wird, sowie das mechanische Testen dieser, ist es möglich, eine Datengrundlage für zukünftige Konstruktionen zu erstellen.:Tabellenverzeichnis vi Abbildungsverzeichnis viii Abkürzungsverzeichnis xiv 1 Einleitung 1 2 Grundlagen 4 2.1 Leichtbau . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.1.1 Leichtbauprinzipien . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.1.1 Prinzipien in der Entwurfsphase . . . . . . . . . . . . 5 2.1.1.2 Prinzipien in der Konstruktionsphase . . . . . . . . . 6 2.1.2 Zellulare Strukturen . . . . . . . . . . . . . . . . . . . . . . . 7 2.1.2.1 Mechanische Eigenschaften . . . . . . . . . . . . . . 8 2.1.2.2 Thermische Eigenschaften . . . . . . . . . . . . . . . 12 2.1.2.3 Elektrische Eigenschaften . . . . . . . . . . . . . . . 13 2.2 Selektives Laserstrahlschmelzen . . . . . . . . . . . . . . . . . . . . . 14 2.2.1 Funktionsweise . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.2.1.1 Prozesskette . . . . . . . . . . . . . . . . . . . . . . . 15 2.2.1.2 Einflussgrößen . . . . . . . . . . . . . . . . . . . . . 17 2.2.1.3 Physikalische Aspekte der Interaktion zwischen Laser und Pulver . . . . . . . . . . . . . . . . . . . . . 19 2.2.1.4 Erstarrung aus der Schmelze . . . . . . . . . . . . . . 21 2.2.2 Stand der Technik/Anwendungen . . . . . . . . . . . . . . . . 21 2.3 Werkstoffe/Materialien . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.3.1 Titanaluminid . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.3.2 Additive Fertigung von Titanaluminiden . . . . . . . . . . . . 26 2.3.3 Stahl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.3.4 Selektives Laserstrahlschmelzen von Stahl . . . . . . . . . . . 32 2.4 Statistische Versuchsplanung . . . . . . . . . . . . . . . . . . . . . . . 34 2.5 Oberflächenbehandlungen . . . . . . . . . . . . . . . . . . . . . . . . 37 3 Materialien und Herstellung 39 3.1 Pulverherstellung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.1.1 Stahl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.1.2 Titanaluminid . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.2 Selektive Laserstrahlschmelzanlage . . . . . . . . . . . . . . . . . . . 39 3.3 Modifikationen der Anlage . . . . . . . . . . . . . . . . . . . . . . . . 41 3.3.1 Gasreiniger . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.3.2 Substratheizung . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.4 Selektive Laserstrahlschmelzexperimente . . . . . . . . . . . . . . . . 44 3.4.1 Titanaluminid . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.4.1.1 Parametersuche . . . . . . . . . . . . . . . . . . . . . 47 3.4.1.2 Einzelschmelzbahn-Experimente . . . . . . . . . . . 47 3.4.1.3 Statistische Versuchspläne . . . . . . . . . . . . . . . 48 3.4.1.4 Variation des Substratmaterials . . . . . . . . . . . . 50 3.4.1.5 Variation des Schraffurstils . . . . . . . . . . . . . . 50 3.4.1.6 Versuche bei erhöhten Temperaturen . . . . . . . . . 51 3.4.2 Stahl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.4.2.1 Prozessparameter . . . . . . . . . . . . . . . . . . . . 51 3.4.2.2 Variation der Prozessparameter . . . . . . . . . . . . 51 3.4.2.3 Komplexe Probengeometrien . . . . . . . . . . . . . 51 3.5 Wärmebehandlungen . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.6 Oberflächenbehandlungen . . . . . . . . . . . . . . . . . . . . . . . . 57 3.7 Gussexperimente . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 4 Charakterisierung 60 4.1 Strukturelle und mikrostrukturelle Charakterisierung . . . . . . . . . 60 4.1.1 Chemische Analyse . . . . . . . . . . . . . . . . . . . . . . . . 60 4.1.2 Lichtmikroskopie . . . . . . . . . . . . . . . . . . . . . . . . . 60 4.1.3 Raster-Elektronen-Mikroskopie . . . . . . . . . . . . . . . . . 61 4.1.4 Röntgendiffraktometrie . . . . . . . . . . . . . . . . . . . . . . 62 4.1.5 Dichtemessung . . . . . . . . . . . . . . . . . . . . . . . . . . 62 4.1.5.1 Geometrische Methode . . . . . . . . . . . . . . . . . 62 4.1.5.2 Archimedisches Prinzip . . . . . . . . . . . . . . . . 63 4.1.5.3 Metallographische Methode . . . . . . . . . . . . . . 63 4.1.6 Thermische Analyse . . . . . . . . . . . . . . . . . . . . . . . 64 4.2 Mechanische Charakterisierung . . . . . . . . . . . . . . . . . . . . . 64 4.2.1 Druckversuch . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 4.2.2 Zugversuch . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 4.2.3 Verformungsbetrachtung . . . . . . . . . . . . . . . . . . . . . 65 4.3 Pulvercharakterisierung . . . . . . . . . . . . . . . . . . . . . . . . . . 65 4.3.1 Pulvergrößenverteilung . . . . . . . . . . . . . . . . . . . . . . 65 4.3.2 Fließfähigkeit . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 4.4 Rauheitsmessung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 5 Ergebnisse und Diskussion 67 5.1 Titanaluminid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 5.1.1 Ausgangsmaterial . . . . . . . . . . . . . . . . . . . . . . . . . 67 5.1.1.1 Legierung Ti48Al48Cr2Nb2 . . . . . . . . . . . . . . . 67 5.1.1.2 Legierung Ti38,87Al43,67Nb4,08Mo1,02B0,1 . . . . . . . . 68 5.1.2 Pulvermaterial . . . . . . . . . . . . . . . . . . . . . . . . . . 69 5.1.3 SLM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 5.1.3.1 Legierung Ti48Al48Cr2Nb2 . . . . . . . . . . . . . . . 72 5.1.3.2 Legierung Ti38,87Al43,67Nb4,08Mo1,02B0,1 . . . . . . . . 84 5.2 Stahl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 5.2.1 Pulvermaterial . . . . . . . . . . . . . . . . . . . . . . . . . . 104 5.2.2 Gussgefüge . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 5.2.3 Gefüge der mit SLM hergestellten Proben . . . . . . . . . . . 108 5.2.4 Einfluss der Wärmebehandlung . . . . . . . . . . . . . . . . . 111 5.2.5 Modifikation des Oberflächenzustandes . . . . . . . . . . . . . 114 5.2.6 Zellulare Strukturen . . . . . . . . . . . . . . . . . . . . . . . 120 5.2.6.1 Kubisches Gitter . . . . . . . . . . . . . . . . . . . . 120 5.2.6.2 Pyramidales Gitter . . . . . . . . . . . . . . . . . . . 123 5.2.6.3 Tetragonales Gitter . . . . . . . . . . . . . . . . . . . 126 5.2.6.4 Dodekaedrisches Gitter . . . . . . . . . . . . . . . . 129 5.2.6.5 Zugstäbe mit Gitterstrukturen . . . . . . . . . . . . 140 6 Zusammenfassung 142 7 Ausblick 146 Literaturverzeichnis 148 8 Anhang I / This work deals with the currently existing challenges of technology of additive manufacturing in the form of selective laser melting (SLM). The aspects of lightweight construction with the SLM process will be highlighted. This is done with two theoretical approaches to weight reduction of components: 1. the use of materials of lower density or new high-strength materials; 2. new construction methods through new design and material construction principles. In practice, the first approach is performed through the development of process parameters and their influence on the microstructure of - for the SLM-process – a new lightweight material, the titanium aluminide (TiAl). Among the large range of various TiAl alloys the following two representatives Ti38,87Al43,67Nb4,08Mo1,02B0,1 and Ti48Al48Cr2Nb2 were chosen because of their good property spectrum and their different solidification behavior. The second approach pursued the production of various lattice structures made of 1.4404 steel (X2CrNiMo 17-12-2). By fabricating lattices with different relative densities, which is achieved by varying the diameter of the struts, and the mechanical testing of those, it is possible to create a data base for future construction principles.:Tabellenverzeichnis vi Abbildungsverzeichnis viii Abkürzungsverzeichnis xiv 1 Einleitung 1 2 Grundlagen 4 2.1 Leichtbau . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.1.1 Leichtbauprinzipien . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.1.1 Prinzipien in der Entwurfsphase . . . . . . . . . . . . 5 2.1.1.2 Prinzipien in der Konstruktionsphase . . . . . . . . . 6 2.1.2 Zellulare Strukturen . . . . . . . . . . . . . . . . . . . . . . . 7 2.1.2.1 Mechanische Eigenschaften . . . . . . . . . . . . . . 8 2.1.2.2 Thermische Eigenschaften . . . . . . . . . . . . . . . 12 2.1.2.3 Elektrische Eigenschaften . . . . . . . . . . . . . . . 13 2.2 Selektives Laserstrahlschmelzen . . . . . . . . . . . . . . . . . . . . . 14 2.2.1 Funktionsweise . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.2.1.1 Prozesskette . . . . . . . . . . . . . . . . . . . . . . . 15 2.2.1.2 Einflussgrößen . . . . . . . . . . . . . . . . . . . . . 17 2.2.1.3 Physikalische Aspekte der Interaktion zwischen Laser und Pulver . . . . . . . . . . . . . . . . . . . . . 19 2.2.1.4 Erstarrung aus der Schmelze . . . . . . . . . . . . . . 21 2.2.2 Stand der Technik/Anwendungen . . . . . . . . . . . . . . . . 21 2.3 Werkstoffe/Materialien . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.3.1 Titanaluminid . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.3.2 Additive Fertigung von Titanaluminiden . . . . . . . . . . . . 26 2.3.3 Stahl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.3.4 Selektives Laserstrahlschmelzen von Stahl . . . . . . . . . . . 32 2.4 Statistische Versuchsplanung . . . . . . . . . . . . . . . . . . . . . . . 34 2.5 Oberflächenbehandlungen . . . . . . . . . . . . . . . . . . . . . . . . 37 3 Materialien und Herstellung 39 3.1 Pulverherstellung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.1.1 Stahl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.1.2 Titanaluminid . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.2 Selektive Laserstrahlschmelzanlage . . . . . . . . . . . . . . . . . . . 39 3.3 Modifikationen der Anlage . . . . . . . . . . . . . . . . . . . . . . . . 41 3.3.1 Gasreiniger . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.3.2 Substratheizung . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.4 Selektive Laserstrahlschmelzexperimente . . . . . . . . . . . . . . . . 44 3.4.1 Titanaluminid . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.4.1.1 Parametersuche . . . . . . . . . . . . . . . . . . . . . 47 3.4.1.2 Einzelschmelzbahn-Experimente . . . . . . . . . . . 47 3.4.1.3 Statistische Versuchspläne . . . . . . . . . . . . . . . 48 3.4.1.4 Variation des Substratmaterials . . . . . . . . . . . . 50 3.4.1.5 Variation des Schraffurstils . . . . . . . . . . . . . . 50 3.4.1.6 Versuche bei erhöhten Temperaturen . . . . . . . . . 51 3.4.2 Stahl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.4.2.1 Prozessparameter . . . . . . . . . . . . . . . . . . . . 51 3.4.2.2 Variation der Prozessparameter . . . . . . . . . . . . 51 3.4.2.3 Komplexe Probengeometrien . . . . . . . . . . . . . 51 3.5 Wärmebehandlungen . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.6 Oberflächenbehandlungen . . . . . . . . . . . . . . . . . . . . . . . . 57 3.7 Gussexperimente . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 4 Charakterisierung 60 4.1 Strukturelle und mikrostrukturelle Charakterisierung . . . . . . . . . 60 4.1.1 Chemische Analyse . . . . . . . . . . . . . . . . . . . . . . . . 60 4.1.2 Lichtmikroskopie . . . . . . . . . . . . . . . . . . . . . . . . . 60 4.1.3 Raster-Elektronen-Mikroskopie . . . . . . . . . . . . . . . . . 61 4.1.4 Röntgendiffraktometrie . . . . . . . . . . . . . . . . . . . . . . 62 4.1.5 Dichtemessung . . . . . . . . . . . . . . . . . . . . . . . . . . 62 4.1.5.1 Geometrische Methode . . . . . . . . . . . . . . . . . 62 4.1.5.2 Archimedisches Prinzip . . . . . . . . . . . . . . . . 63 4.1.5.3 Metallographische Methode . . . . . . . . . . . . . . 63 4.1.6 Thermische Analyse . . . . . . . . . . . . . . . . . . . . . . . 64 4.2 Mechanische Charakterisierung . . . . . . . . . . . . . . . . . . . . . 64 4.2.1 Druckversuch . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 4.2.2 Zugversuch . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 4.2.3 Verformungsbetrachtung . . . . . . . . . . . . . . . . . . . . . 65 4.3 Pulvercharakterisierung . . . . . . . . . . . . . . . . . . . . . . . . . . 65 4.3.1 Pulvergrößenverteilung . . . . . . . . . . . . . . . . . . . . . . 65 4.3.2 Fließfähigkeit . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 4.4 Rauheitsmessung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 5 Ergebnisse und Diskussion 67 5.1 Titanaluminid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 5.1.1 Ausgangsmaterial . . . . . . . . . . . . . . . . . . . . . . . . . 67 5.1.1.1 Legierung Ti48Al48Cr2Nb2 . . . . . . . . . . . . . . . 67 5.1.1.2 Legierung Ti38,87Al43,67Nb4,08Mo1,02B0,1 . . . . . . . . 68 5.1.2 Pulvermaterial . . . . . . . . . . . . . . . . . . . . . . . . . . 69 5.1.3 SLM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 5.1.3.1 Legierung Ti48Al48Cr2Nb2 . . . . . . . . . . . . . . . 72 5.1.3.2 Legierung Ti38,87Al43,67Nb4,08Mo1,02B0,1 . . . . . . . . 84 5.2 Stahl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 5.2.1 Pulvermaterial . . . . . . . . . . . . . . . . . . . . . . . . . . 104 5.2.2 Gussgefüge . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 5.2.3 Gefüge der mit SLM hergestellten Proben . . . . . . . . . . . 108 5.2.4 Einfluss der Wärmebehandlung . . . . . . . . . . . . . . . . . 111 5.2.5 Modifikation des Oberflächenzustandes . . . . . . . . . . . . . 114 5.2.6 Zellulare Strukturen . . . . . . . . . . . . . . . . . . . . . . . 120 5.2.6.1 Kubisches Gitter . . . . . . . . . . . . . . . . . . . . 120 5.2.6.2 Pyramidales Gitter . . . . . . . . . . . . . . . . . . . 123 5.2.6.3 Tetragonales Gitter . . . . . . . . . . . . . . . . . . . 126 5.2.6.4 Dodekaedrisches Gitter . . . . . . . . . . . . . . . . 129 5.2.6.5 Zugstäbe mit Gitterstrukturen . . . . . . . . . . . . 140 6 Zusammenfassung 142 7 Ausblick 146 Literaturverzeichnis 148 8 Anhang I
78

A study of micro- and surface structures of additive manufactured selective laser melted nickel based superalloys

Strand, Emil, Wärnheim, Alexander January 2016 (has links)
This study examined the micro- and surface structures of objects manufactured by selective laser melting (SLM). The results show that the surface roughness in additively manufactured objects is strongly dependent on the geometry of the built part whereas the microstructure is largely unaffected. As additive manufacturing techniques improve, the application range increases and new parameters become the limiting factor in high performance applications. Among the most demanding applications are turbine components in the aerospace and energy industries. These components are subjected to high mechanical, thermal and chemical stresses and alloys customized to endure these environments are required, these are often called superalloys. Even though the alloys themselves meet the requirements, imperfections can arise during manufacturing that weaken the component. Pores and rough surfaces serve as initiation points to cracks and other defects and are therefore important to consider. This study used scanning electron-, optical- and focus variation microscopes to evaluate the microstructures as well as parameters of surface roughness in SLM manufactured nickel based superalloys, Inconel 939 and Hastelloy X. How the orientation of the built part affected the surface and microstructure was also examined. The results show that pores, melt pools and grains where not dependent on build geometry whereas the surface roughness was greatly affected. Both the Rz andRa values of individual measurements were almost doubled between different sides of the built samples. This means that surface roughness definitely is a factor to be considered when using SLM manufacturing.
79

Investigation of processing parameters for laser powder bed fusion additive manufacturing of bismuth telluride

Rickert, Kelly Michelle 02 June 2022 (has links)
No description available.
80

The mechanical properties of lattice truss tructures with loadbearing shells made of selectively laser melted Hastelloy X (TM)

Saarimäki, Jonas January 2011 (has links)
This thesis discusses how to test the mechanical properties of openlattice truss structures and hybrids being a tube containing a latticetruss structure. By properties we mean strength, stiffness, thermalconductivity and so forth.Mechanical testing was done on two different structures to betterunderstand how the load-bearing properties change when these structuresare subjected to tensile, compressive and bending forces. The structuresinvestigated were Diamond and Octagon built at 45° and 90°. Acousticemission was also used to evaluate and analyze the different behaviour ofthe structures. The test results were used to produce design criteria forproperties in different cell structures manufactured of Hastelloy X™. Amap with design criteria containing stiffness and weight per cubiccentimetre was produced for parts that would be subjected to compressiveforces.

Page generated in 0.0507 seconds