• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 67
  • 35
  • 11
  • 7
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 164
  • 164
  • 157
  • 82
  • 80
  • 48
  • 42
  • 41
  • 32
  • 31
  • 28
  • 27
  • 26
  • 24
  • 23
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Macro composites for crushing - additive manufacturing of hard phase : Development and testing of macro composites for crushing purposes

Wojtowicz, Maria January 2021 (has links)
During this master thesis a crushing material composite was developed in order to determine if a specific design consisting of a pointy hard phase with a ductile phase in between can reduce the load needed to crush stone and therefor decrease the energy consumption during stone crushing. The steel hard phase (ASP 2012) was printed using an additive manufacturing method called selective laser melting (SLM). A process parameter optimization was performed in order to achieve a dense material and a pre-heated building platform was used to prevent cracking. The hard phase designs were printed and then filled with bronze (JM3 and JM7). The composites and steel references were tested by placing a stone on each sample and applying pressure until the stone broke. After the tests, the loads and the deterioration of the samples was analyzed. The results showed that it was possible to print the hard phase, but some defects like micro cracking were hard to eliminate entirely. Several methods were tested to cast the bronze but the most suitable during this project was melting of the bronze in an induction furnace with vacuum atmosphere. The results from the crushing simulations showed that there was a small difference between the references and the developed macro composites. The composites began to crush stones at lower loads than the references. Nevertheless, due to a large dispersion of the results a statistical difference could not be established.
82

Residual Stress Enhancement of Additively Manufactured Inconel 718 by Laser Shock Peening and Ultrasonic Nano-crystal Surface Modification

Sidhu, Kuldeep S. January 2018 (has links)
No description available.
83

Microstructure and Mechanical Properties of Laser Additively Manufactured Nickle based Alloy with External Nano Reinforcement: A Feasibility Study

Wang, Yachao 30 October 2018 (has links)
No description available.
84

A Lagrangian Meshfree Simulation Framework for Additive Manufacturing of Metals

Fan, Zongyue 21 June 2021 (has links)
No description available.
85

Surface modification of additively manufactured metallic components

Mekhiel, Sameh January 2021 (has links)
Additive Manufacturing (AM) has revolutionized manufacturing processes by enabling the realization of custom products with intricate geometric features that were either too complex or even intractable for subtractive manufacturing processes. Yet, functional surfaces generated in AM have to be often finish machined because of their relatively inferior roughness. The first phase of this research worked around this limitation by tailoring the topography of an AM surface in-process to entail textures that further enhance certain functionalities in a process called Additive Texturing (AT). In this context, the Selective Laser Melting (SLM) process ability to realize intricate surface microfeatures was explored experimentally, evaluating its geometrical limitations. Utilizing such limitations, various patterns comprising pillars, channels, and re-entrant structures were printed to control the wetting behaviour of SLM stainless steel. AT's efficacy is demonstrated in its capability to generate hydrophobic AM surfaces with water contact angles exceeding 140°. Similarly, other texturing patterns comprising dimples, linear, V-shaped, and X-shaped grooves were investigated to tailor the tribological response of textured surfaces under dry sliding conditions. Evidently, a specific wear rate and coefficient of friction reduction of 80% and 60%, respectively, demonstrated another potential for AT. The undesirable tensile Residual Stresses (RS) that inevitably accumulate during the SLM process's rapid heating and cooling cycles were investigated in the second phase of this research. Laser Peening (LP) was utilized to post-process the printed samples to eliminate the initial tensile RS and induce near 500 Mpa compressive RS. Moreover, the LP parameters were explored and optimized to enhance RS, surface roughness, hardness, and wear resistance. / Thesis / Doctor of Philosophy (PhD)
86

Development of a Metal-Metal Powder Formulations Approach for Direct Metal Laser Melting of High-Strength Aluminum Alloys

Bradford-Vialva, Robyn L. 18 May 2021 (has links)
No description available.
87

Thermokinetics-Dependent Microstructural Evolution and Material Response in Laser-Based Additive Manufacturing

Pantawane, Mangesh V 12 1900 (has links)
Laser-based additive manufacturing offers a high degree of thermokinetic flexibility that has implications on the structure and properties of the fabricated component. However, to exploit the flexibility of this process, it is imperative to understand the process-inherent thermokinetic evolution and its effect on the material characteristics. In view of this, the present work establishes a fundamental understanding of the spatiotemporal variation of thermokinetics during the fabrication of the non-ferrous alloys using the laser powder bed fusion process. Due to existing limitations of experimental techniques to probe such thermokinetics, a finite element method-based computational model is developed to predict the thermokinetic variations during the process. With the computational approach coupled with experimental techniques, the current work presents the solidification behavior influenced by spatially varying thermokinetics. In addition, it uniquely predicts the process-inherent multi-track multi-layer evolution of thermal cycles as well as thermal stress cycles and identifies their influence on the post-solidification microstructural evolution involving solid-state phase transformation. Lastly, the response of the material with a unique microstructure is recorded under various conditions (static and dynamic), which is again compared with the same set properties obtained for the same material processed via conventional routes.
88

Evaluation of residual stresses and distorsions in additively manufactured components

Jonsson, Sonja, Krappedal, Sebastian January 2018 (has links)
Additive manufacturing is a novel manufacturing technique, which has developed rapidly in recent years. The additive manufacturing process produces complex geometries, light weighted components and reduces the material waste. During the building process, a laser energy source is commonly used to melt the metal powder. Due to the presence of thermal gradients, residual stresses resides in the final product. These residual stresses, when released, result in a distortion of the product. To predict the appearing residual stresses and distortions, simulation tools can be used and prevent costly trials of failed printed products. This thesis investigates whether a good prediction of residual stresses and distortions can be performed in additively manufactured components using MSC Simufact. The inherent strain method was used to predict the residual stresses and distortions of a cantilever beam respectively a pipe. The printed components were then compared with the simulations. The residual stresses were examined using a X-ray di↵ractometer and the distortions were analyzed by a laser scanner.Results showed that the predicted distortions of the pipe correlated well with the simulations. However, the residual stresses were dicult to compare with the simulations. The conclusion that Simufact Additive can predict distortions can thus be drawn.
89

Crucial Parameters for Additive Manufacturing of Metals : A Study in Quality Improvement

Berglund, Lina, Ivarsson, Filip, Rostmark, Marcus January 2019 (has links)
Production by Additive Manufacturing creates opportunities to make customized products in small batches with less material than in traditional manufacturing. It is more sustainable and suitable for niche products, but entails new production demands to ensure quality. The goal of this study is to define the most crucial parameters when creating Additive Manufactured products in metal and suggest tools for quality improvement. This is done by analysing earlier studies and evaluating the standard production procedures for manufacturing by Selective Laser Melting. The results from this study stated that porosity and insufficiencies in shape are the most common factors leading to deviation in quality. To avoid it, the most crucial parameters to consider are; The laser freeform fabrication-system related parameters, hatch distance, laser power, layer thickness, fscanning pattern, scan speed and flowability of the powder. Concluded is also that crucial parameters within additive manufacturing are very dependent on the definition of quality for a certain product and can therefore vary. By continuous collection and analysis of data, the task of improving quality will be simplified. / Produktion genom Additiv Tillverkning möjliggör tillverkande av skräddarsydda produkter i små batcher och med mindre material än vid traditionell tillverkning. Det är ett mer hållbart tillverkningssätt och mer passande för nischprodukter, men innebär nya produktionskrav för att säkerhetsställa bra kvalitet. Målet med denna studie är att definiera de viktigaste parametrarna vid Additiv Tillverkning av produkter i metall och föreslå verktyg för att förbättra dem. Detta genom analys av tidigare studier och utvärdering av klassiska produktionsrutiner för Selective Laser Melting. Resultaten från denna studie visar att porositet och formfel är de vanligaste faktorerna som leder till bristande kvalitet. För att undvika detta är de viktigaste parametrarna att ta i beaktande; parametrar kopplade till "laser freeform fabrication"-system, distans mellan laserstrålar, kraft på lasern, lagertjocklek, skanningsmönster, fart på skanningen och flytbarhet på pulvret. Slutsatsen pekar även på att avgörande parametrar inom Additiv Tillverkning beror på definitionen av kvalitet för en speciell produkt och kan därför variera. Genom kontinuerlig insamling och analys av data kommer förbättringen av kvalitet förenklas markant.
90

METALLIC MATERIALS STRENGTHENING VIA SELECTIVE LASER MELTING EMPLOYING NANOSECOND PULSED LASERS

Danilo de Camargo Branco (14227169) 07 December 2022 (has links)
<p> The Selective Laser Melting (SLM) process is a manufacturing technique that facilitates the  production of metallic parts with complex geometries and reduces both materials waste and lead  time. The high tunability of the process parameters in SLM allows the design of the as-built part’s  characteristics, such as controlled microstructure formation, residual stresses, presence of pores,  and lack of fusion. The main parameter in the SLM process that influences these parts’  characteristics is the transient temperature field resulting from the laser-matter interaction.  Nanosecond pulsed lasers in SLM have the advantage of enabling rapid and localized heating and  cooling that make the formation of ultrafine grains possible. This work shows how different pulse  durations can change the near-surface microstructure and overall mechanical properties of metallic  parts. The nanosecond pulses can melt and resolidify aluminum parts’ near-surface region to form nanograined gradient structures with yield strengths as high as 250.8 MPa and indentation  strengths as high as 725 MPa, which are comparable to some steel's mechanical properties. Knowing that the nanosecond pulsed lasers cause microstructure refinement for high-purity metals,  the microstructure variations effects were also investigated for the cast iron alloy. Cast iron was  used alone and mixed with born or boron nitride powders to induce the precipitation of  strengthening phases only enabled under high cooling rates. Although producing parts with  superior mechanical properties and controlling the precipitation of strengthening phases, the SLM  process with nanosecond pulsed lasers is still accompanied by defects formation, mainly explained  by the large thermal gradients, keyhole effect, reduced melt pool depth, and rapid cooling rates.  Ideally, a smooth heating rate able to sinter powder grains, facilitating the heat flow through the  heat-affected zone, followed by a sharper heating rate that generates a fully molten region, but  minimizes ablation at the same time are targeted to reduce the porosity and lack of fusion. Then, a  sharp cooling rate that can increase the nucleation rate, consequently refining the final  microstructure is targeted in the production of strong materials in SLM with pulsed lasers. This  work is the pioneer in controlling the transient temperature field during the heating and cooling  stages in pulsed laser processing. The temperature field control capability by shaping a nanosecond  laser pulse in the time domain affecting defects formation, residual strains, and microstructure was  achieved, opening a wide research niche in the additive manufacturing field.  </p>

Page generated in 0.085 seconds