Spelling suggestions: "subject:"laser sintering"" "subject:"faser sintering""
91 |
Size effects in out-of-plane bending in elastic honeycombs fabricated using additive manufacturing : modeling and experimental resultsMikulak, James Kevin 06 February 2012 (has links)
Size effects in out-of-plane bending stiffness of honeycomb cellular materials were studied using analytical mechanics of solids modeling, fabrication of samples and mechanical testing. Analysis predicts a positive size-effect relative to continuum model predictions in the flexure stiffness of a honeycombed beam loaded in out-of-plane bending. A method of determining the magnitude of that effect for several different methods of constructing or assembling square-celled and hexagonal-celled materials, using both single-walled and doubled-walled construction methods is presented. Hexagonal and square-celled honeycombs, with varying volume fractions were fabricated in Nylon 12 using Selective Laser Sintering. The samples were mechanically tested in three-point and four point-bending to measure flexure stiffness. The results from standard three-point flexure tests, did not agree with predictions based on a mechanics of solids model for either square or hexagonal-celled samples. Results for four-point bending agreed with the mechanics of solids model for the square-celled geometries but not for the hexagonal-celled geometries. A closed form solution of an elasticity model for the response of the four-point bending configuration was developed, which allows interpretation of recorded displacement data at two points and allows separation the elastic bending from the localized, elastic/plastic deformation that occurs between the loading rollers and the specimen’s surface. This localized deformation was significant in the materials tested. With this analysis, the four-point bending data agreed well with the mechanics of solids predictions. / text
|
92 |
Numerical modeling and simulation of selective laser sintering in polymer powder bed / Modélisation numérique et simulation du frittage par laser dans les poudre polymèreLiu, Xin 28 February 2017 (has links)
La fabrication additive est l’un des secteurs industriels les plus en développent ces dernières années. L’une de ces technologies de fabrication les plus prometteuses est la fusion laser sélective (SLS), et relève d’un intérêt croissant aussi bien industriel qu’académique. Néanmoins, beaucoup de phénomène mis en jeu par ce procédé demeure non encore bien compris, entravant ainsi son développement pour la production de pièces de bonne qualité pour des applications industrielles. L’objectif de cette thèse est de développer un cadre de simulation numérique permettant la simulation du procédé SLS pour des poudres de polymère afin de comprendre les multiples et complexes phénomènes physiques qui se produise lors du frittage laser et d’étudier l’influence des paramètres du procédé sur la qualité du produit final. Contrairement aux approches classiques de modélisation numérique, basées sur la définition de matériaux homogène équivalents pour la résolution des équations de bilan, nous proposons une simulation globale du procédé du frittage laser de poudres, en utilisant la méthode des Eléments Discrets (DEM). Cela consiste en un couplage entre quatre sous-modèles : transferts radiatif dans le milieu granulaire semi-transparent, conduction thermique dans les milieux discrets, coalescence puis densification. Le modèle de transferts par rayonnement concerne l’interaction du faisceau laser avec le lit de poudre. Plusieurs phénomènes sont ainsi pris en compte, notamment la réflexion, la transmission, l’absorption et la réfraction. De plus, une méthode de Monte-Carlo couplée à la méthode du Lancer de rayons est développée afin d’étudier l’influence de la réfraction sur la distribution de l’énergie du laser dans le lit de poudre. Le modèle de conduction dans des milieux discrets décrit la diffusion thermique inter-particules. Finalement, le modèle de frittage décrit les cinétiques de coalescence et de diffusion de l’air dans le polymère et densification du milieu. Cela permet de décrire les cinétiques de fusion des grains, dont l’énergie de surface et la diffusons de l’air sont les deux moteurs principaux. Le couplage entre les différents modèles nous a permis de proposer un modèle numérique global, validé grâce à des comparaisons à des résultats de simulations théoriques et expérimentales, trouvés dans la littérature. Une analyse paramétrique est alors proposée pour la validation du modèle et l’étude du procédé. L’influence de différents paramètres aussi bien du procédé que du matériau sur le champ de température, la densité relative du matériau sa structure, etc , est ainsi investiguée. Les résultats montrent une bonne précision dans la modélisation des différents phénomènes complexes inhérents à ce procédé, et ce travail constitue un potentiel réel pour la modélisation et l’optimisation des procédés de fabrication additive par matériaux granulaires. / Many industrial and academic interests concerning the additive manufacturing processes are developed in the last decades. As one of the most promising technique of additive manufacturing, the Selective Laser Sintering (SLS) has been valued by both industry and academic. However, it remains that several phenomena are still not well understood in order to properly model the process and propose quality improvement of parts made. The goal of this Ph.D. project is to develop a framework of numerical simulation in order to model the SLS process in polymer powder bed, meanwhile understanding multiple physical phenomena occurring during the process and studying the influence of process parameters on the quality of final product. In contrast to traditional approach, based on the equivalent homogeneous material in numerical modeling of partial differential equations derived from conservation laws, we propose a global model to simulate powder-based additive manufacturing by using the Discrete Element method (DEM). It consists in a coupling between four different physical models: radiative heat transfer, discrete heat conduction, sintering and granular dynamics models. Firstly, the submodel of radiative heat transfer concerns the interaction between the laser beam and powder bed. Several phenomena are considered, including the reflection, transmission, absorption and scattering. Besides, a modified Monte Carlo ray-tracing method is developed in order to study the influence of scattering on the distribution of the deposited laser energy inside the powder bed Furthermore, the submodel of discrete heat conduction describes the inter-particles heat diffusion. Moreover, the sintering submodel concerns the phenomena of coalescence and air diffusion. It describes the melting kinetics of grains, driven by surface tension and the release of entrapped gases inside powder bed. Finally, the granular dynamics submodel concerns the motions and contacts between particles when depositing a new layer of powders. The coupling between these submodels leads to propose a global numerical framework, validated by comparing the results to both simulated and experimental ones from literatures. A parametric study is then proposed for model validation and process analysis. The Influence of different material and process parameters on the evolution of temperature, relative density and materials structure and characteristics are investigated. The results exhibit accurate modeling of the complex phenomena occurring during the SLS process, and the work constitute a great potential in modeling and optimization of additive processes.
|
93 |
Processamento convencional, a laser e assistido por campo elétrico de eletrocerâmicas de ACu3Ti4O12 (A = Ca, Bi2/3): (micro)estrutura e propriedades (di)elétricas / Conventional, laser, and electric-field assisted processing of ACu3Ti4O12 (A = Ca, Bi2/3) electroceramics: (micro)structure and (di)electric propertiesLílian Menezes de Jesus 26 October 2016 (has links)
Materiais da família ACu3Ti4O12 (ACTO) são potenciais candidatos para aplicação como dielétricos em capacitores cerâmicos devido aos seus altíssimos valores de constante dielétrica (ε\'), podendo chegar a 105 à temperatura ambiente. Entretanto, a origem deste fenômeno, denominado constante dielétrica gigante (CDG), é ainda uma questão altamente discutida na literatura. Deste modo, para compreender melhor os mecanismos por trás da manifestação desta CDG, neste trabalho os compostos ACu3Ti4O12 (com A = Ca, Bi2/3) foram sintetizados por uma rota baseada no método dos precursores poliméricos, sendo as reações envolvidas durante a síntese investigadas por análise térmica diferencial (ATD) e termogravimentria (TG). O subsequente processamento cerâmico foi realizado via sinterização tanto convencional quanto não convencional, utilizando, neste último caso, sinterização a laser e assistida por campo elétrico. As características (micro)estruturais foram avaliadas por meio de difratometria de raios X (DRX), microscopia eletrônica de varredura (MEV) e espectroscopia de energia dispersiva de raios X (EDX). Já as propriedades (di)elétricas foram estudadas, em nível microestrutural, utilizando espectroscopia de impedância (EI). Destas caracterizações, verificou-se que tanto as características (micro)estruturais quanto as propriedades (di)elétricas são fortemente influenciadas pelas condições de processamento. Neste sentido, mostramos que estes materiais podem apresentar baixos valores de permissividade à temperatura ambiente (ε\' ~ 102), típicos da resposta do volume, quando possuem grãos resistivos. Em contrapartida, quando as cerâmicas apresentam grãos semicondutores, valores de constante dielétrica gigante (ε\' >103) são verificados à temperatura ambiente devido à manifestação de efeitos de polarização interfacial. O caráter semicondutor dos grãos surge de maneira termicamente assistida. Isto ocorre porque, em maiores temperaturas, há uma migração de Cu para as regiões intergranulares das cerâmicas e também uma reação de redução do Cu2+ em Cu+. Durante o resfriamento o Cu+ reoxida, dando origem a semicondutividade dos grãos (deficientes em Cu). Como as condições empregadas na sinterização influenciaram as propriedades finais das cerâmicas, incluindo tamanho médio de grãos, decidimos inovar no processamento cerâmico ao aplicar um campo elétrico durante o tratamento térmico partindo de um pó ainda amorfo. Isto levou à observação de dois cenários: i) em altos campos, o pó sai de seu estado amorfo, passa pela cristalização de fases intermediárias, seguida de síntese ultrarrápida (flash synthesis), sem densificação; ii) em baixos campos, o pó transita do estado amorfo à fase final (passando pela cristalização das fases intermediárias), acompanhada de sinterização ultrarrápida (flash sintering), com alta densificação, tudo isso em um único experimento (FAST O3S). Finalmente, mostramos assim que utilizar um campo elétrico durante o tratamento térmico pode acelerar significativamente as taxas tanto de síntese quanto de sinterização, o que abre um novo paradigma no processamento de materiais cerâmicos. / Materials of the ACu3Ti4O12 (ACTO) family are potential candidates for application as dielectric in ceramic capacitors due to their extremely large dielectric constant (ε\'), which can reach 105 at room temperature. However, the origin of such large ε\' values, known as giant dielectric constant (GDC), is still an open debate in the literature. In order to better understand the mechanisms behind the manifestation of the GDG phenomenon, in this work, the compounds ACu3Ti4O12 (with A = Ca, Bi2/3) were synthesized by applying a modified polymeric precursor method. The reactions taking place during the powders synthesis were investigated through differential thermal analysis (DTA) and thermogravimetry (TG). The ceramic processing was then performed via conventional as well as non-conventional sintering, using, in the latter case, both laser and electric field-assisted sintering. The (micro)structural characteristics were evaluated by X-ray diffraction (DRX), scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDX). Regarding the (di)electric properties, they were examined (at the microstructural level) using impedance spectroscopy (IS). We have shown from these characterizations that both (micro)structural and (di)electric features are strongly dependent on processing conditions. In this sense, we have demonstrated that these materials might present a low permittivity at room temperature (ε\' ~ 102), typical from the bulk response, when the ceramic grains are resistive. On the other hand, when the grains are semiconducting, giant dielectric constant values (ε\' >103) are verified at room temperature due to the manifestation of interfacial polarization effects. The semiconducting nature of the grains is promoted by a thermally-assisted mechanism, i.e., at higher temperatures there is Cu migration towards the ceramic intergranular areas and also a reduction of Cu2+ to Cu+. During cooling, the Cu+ re-oxidizes yielding the grain (Cu-deficient) semiconductivity. Since the conditions employed during the sintering have influenced the final ceramic properties, including the average grain size, we propose a novel approach to the ceramic processing by applying an electric field during the heat treatment starting from an amorphous powder, which led to the following scenarios: i) powder crystallization into the intermediate phases and then instantaneously into the final phase (flash synthesis), displaying no densification, at high fields; ii) powder transition from amorphous to the final phase (through crystallization into intermediate phases), followed by sintering with high densification, at low fields: this is the fast one-step synthesis plus sintering (FAST O3S) of materials, which ends with the so-called flash sintering. Finally, we have demonstrated that both synthesis and sintering rates can be enhanced by applying an electric field during the heat treatment, opening a new paradigm for ceramic processing.
|
94 |
Estudo do comportamento PTCR em cerâmicas de BaTiO3 : la sinterizadas a laserSilva, Marcelo Souza da 10 October 2014 (has links)
The present work aimed to laser sintering and physical characterization of barium titanate ceramics doped with lanthanum, Ba1-xLaxTiO3 (0.1 ≤ x ≤ 0.4) mol%, and co-doped
with manganese, in order to study the PTC effect (Positive Temperature Coefficient of Resistance). In electrical and electronic equipments, materials that exhibit PTC effect are
generally used in circuit protection, or as temperature sensors (thermistors), whose main advantages of thermistors are no contacts subject to corrosion, high resistance to mechanical
shock, the long operating life, low cost and more stable than thermocouples. Additionally, the laser sintering process uses a CO2 laser as the main heating source. This process has been
touted as a promising technology for the ceramic processing, which are subjected to extremely high heating and cooling rates (~ 2000 ° C / min). During the processes of synthesis and characterization Differential Thermal Analysis (DTA), Thermogravimetry (TG), Dilatometry, Differential Scanning Calorimetry, X-ray Diffraction, Scanning Electron
Microscopy, Impedance Spectroscopy and Conductive Microscopy Atomic Force (CAFM) technique were used. Lanthanum doped barium titanate powders were produced via solid state reaction method and calcined at 1200 ° C for 4 hours. The laser sintering process was efficient
to obtain ceramics with relative density of up to 95%. The sintered ceramics presented homogeny microstructure surface under the condition of Pmax = 5.5 W/mm2 for 60 seconds.
The 02BT La sample showed the lowest room temperature resistivity (104 .cm). This value is roughly three orders of magnitude lower than that observed for conventionally sintered
ceramic in electric furnace and with the same dopant concentration. Finally, it is clear that the sintering conditions strongly modify the PTC behavior of the like-BaTiO3 ceramics, thus allowing the fabrication of ceramic components for the thermistors manufacture with different characteristics. / O presente trabalho teve como objetivos a sinterização a laser e a caracterização físicas de cerâmicas de titanato de bário dopadas com lantânio, Ba1-xLaxTiO3 (0,1 ≤ X ≤ 0,4)
mol%, e co-dopadas com manganês, visando estudar o efeito PTC (Coeficiente positivo de resistência com a elevação da temperatura). Em equipamentos eletro-eletrônicos os materiais
que exibem o efeito PTC geralmente são utilizados na proteção de circuitos ou como sensores de temperatura (termistores), cujas principais vantagens dos termistores são a inexistência de
contatos sujeitos à corrosão, a alta resistência a choques mecânicos, a longa vida de operação, baixo custo, e são mais estáveis que os termopares. Adicionalmente, o processo de
sinterização a laser utiliza como principal fonte de calor um laser de CO2. Este processo tem sido apontado como uma técnica promissora no processamento de corpos cerâmicos, os quais
são submetidos a taxas de aquecimento e resfriamento extremamente elevadas (~2000 °C/min), podendo provocar assim alterações em suas propriedades físicas. Durante os
processos de síntese e caracterização fez-se uso das técnicas de Diferencial de Análise Térmica (DTA), Termogravimétria (TG), Dilatometria, Calorimétria Exploratória Diferencial,
Difração de raios X, Microscopia Eletrônica de Varredura e Espectroscopia de Impedância e de Microscopia de Força Atômica em modo condutivo (CAFM). Pós de titanato de bário
dopados com lantânio foram sintetizados pelo método da reação de estado sólido e calcinados a 1200 oC por 4 horas. O processo e sinterização a laser se mostrou eficiente para obtenção de
cerâmicas com densidade relativa de até 95%. Foi obtida uma homogeneidade na microestrutura em toda a superfície da cerâmica, sob a condição de Pmax = 5,5 W/mm2 por
60s. A amostra 02BT:La apresentou menor valor de resistividade à temperatura ambiente, da ordem de 104 .cm. Este valor é aproximadamente três ordens de grandeza menor que o
observado para a cerâmica sinterizada convencionalmente em forno elétrico e na mesma concentração de dopante. Finalmente, é possível afirmar que as condições de sinterização
modificam fortemente o comportamento PTC em cerâmicas a base de BaTiO3, possibilitando dessa forma a confecção de cerâmicas para fabricação de componentes termistores com
diferentes características.
|
95 |
Návrh alternativních způsobů rozebíratelného spojení víka a tělesa skříně vzduchového filtru / Alternative designs for removable connection with cover and housing of airboxDvořák, Milan January 2015 (has links)
The aim of this thesis is to description and comparison of solutions, demountable connection of the lid and box enclosure air filters for motor vehicles, developed and used by the manufacturing concern MANN + HUMMEL, for which air filtration only one part of a broad portfolio of filtration systems for the automotive industry in the world scale. Another part of this thesis will be one of the chosen optimization methods of connection and implementation of alternative proposals design solutions, including the selection of the best solution, creating design calculation, 3D design, FEA analysis and prototyping of an alternative connection method laser sintering. When creating the optimization and design of alternative design solutions can count on the possibility that existing solutions are taking all possible factors and that the best alternative design proposals show an improvement over existing at the expense of all other cells throughout the development of the product.
|
96 |
Design parametrické ortézy horní končetiny / Design of the parametric orthosis for upper limbKosová, Barbora January 2017 (has links)
This thesis deals with the design and manufacturing of custom-made immobilization orthosis for the upper limb. Emphasis is put on the digitization of the approach and integration of additive manufacturing in the workflow of splint production. The solution proposes automatic model construction based on a 3D scan. Such a model is further parametrized in order to provide splinting practitioners with customization abilities. Particular attention is paid to the changes of limb volume due to swell, where the use of auxetic structures is suggested.
|
97 |
Investigating Turbine Vane Trailing Edge Pin Fin Cooling in Subsonic and Transonic CascadesAsar, Munevver Elif 09 July 2019 (has links)
No description available.
|
98 |
Experimental study of double-pulse laser micro sintering, ultrasound-assisted water-confined laser micromachining and laser-induced plasmaWeidong Liu (15360391) 29 April 2023 (has links)
<p>This dissertation presents research work related to laser micro sintering, laser micro machining and laser-induced plasma. Firstly, we present extensive experimental studies of double-pulse laser micro sintering (DP-LMS), which typically utilizes the high pressure generated by laser-induced plasma over the powder bed surface to promote molten flow and enhance densification. Chapter 2 shows a single-track experimental study of the DP-LMS process using cobalt powder. The related fundamental mechanisms and effects of different laser parameters on the sintering results are analyzed with the help of <em>in-situ</em> time-resolved temperature measurements. Chapter 3 shows a multi-track experimental study of the DP-LMS process using iron powder. The sintered materials are characterized via the top surface porosity, elemental composition, grain microstructure, nanohardness and metal phase. Three strategic guidelines for laser parameter selection are summarized in the end. Chapter 4 shows time-resolved imaging and OES measurements for plasma induced during DP-LMS. The plasma temperature and free electron number density are deduced by its optical emission spectra (OES). These three chapters have clearly demonstrated DP-LMS can produce much more continuous and densified materials than LMS only using the sintering or pressing laser pulses.</p>
<p><br></p>
<p>Then, we present laser micro grooving of silicon carbide (SiC) in Chapter 5 by ultrasound-assisted water-confined laser micromachining (UWLM), in comparison with laser machining in water without ultrasound and laser machining in air. UWLM applies <em>in-situ</em> ultrasound to the water-immersed workpiece surface to improve the machining quality and/or productivity. Time-resolved water pressure measurements are carried out to help analyze relevant mechanisms. It has been demonstrated UWLM can be a competitive approach to produce high-quality micro grooves on SiC. The crack problem appears to be effectively solved using a high pulse repetition rate.</p>
<p><br></p>
<p>Finally, we report a double-front phenomenon for plasma induced by high-intensity nanosecond laser ablation of aluminum in Chapter 6. An additional plasma front is observed via an intensified CCD (ICCD) camera, which propagates very fast at the beginning but stops propagating soon after the laser pulse mostly ends. Its formation could be caused by the inverse bremsstrahlung absorption of laser energy by the ionized ambient gas. Three possible mechanisms on how the ambient gas breakdown is initiated are proposed. </p>
|
99 |
Physical Models of Biochemicallly Important Molecules Using Rapid Prototyping TechniquesZubricky, James R., III 28 June 2006 (has links)
No description available.
|
100 |
Resolution-aware Slicing of CAD Data for 3D PrintingOnyeako, Isidore January 2016 (has links)
3D printing applications have achieved increased success as an additive manufacturing (AM) process. Micro-structure of mechanical/biological materials present design challenges owing to the resolution of 3D printers and material properties/composition. Biological materials are complex in structure and composition. Efforts have been made by 3D printer manufacturers to provide materials with varying physical, mechanical and chemical properties, to handle simple to complex applications. As 3D printing is finding more medical applications, we expect future uses in areas such as hip replacement - where smoothness of the femoral head is important to reduce friction that can cause a lot of pain to a patient. The issue of print resolution plays a vital role due to staircase effect. In some practical applications where 3D printing is intended to produce replacement parts with joints with movable parts, low resolution printing results in fused joints when the joint clearance is intended to be very small. Various 3D printers are capable of print resolutions of up to 600dpi (dots per inch) as quoted in their datasheets. Although the above quoted level of detail can satisfy the micro-structure needs of a large set of biological/mechanical models under investigation, it is important to include the ability of a 3D slicing application to check that the printer can properly produce the feature with the smallest detail in a model. A way to perform this check would be the physical measurement of printed parts and comparison to expected results. Our work includes a method for using ray casting to detect features in the 3D CAD models whose sizes are below the minimum allowed by the printer resolution. The resolution validation method is tested using a few simple and complex 3D models. Our proposed method serves two purposes: (a) to assist CAD model designers in developing models whose printability is assured. This is achieved by warning or preventing the designer when they are about to perform shape operations that will lead to regions/features with sizes lower than that of the printer resolution; (b) to validate slicing outputs before generation of G-Codes to identify regions/features with sizes lower than the printer resolution.
|
Page generated in 0.0876 seconds