• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 56
  • 30
  • 22
  • 7
  • 5
  • 5
  • 3
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 167
  • 167
  • 30
  • 29
  • 28
  • 27
  • 21
  • 20
  • 16
  • 14
  • 14
  • 13
  • 13
  • 13
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Studium vlivu mezery na vlastnosti laserem provedeného tupého svaru / Studying the effect of the gap on the properties of laser butt welds

Holub, Matyáš January 2016 (has links)
This thesis studies the impact of gaps on the properties of laser butt weld performed. For experiment was chosen DC01 ordinary steel and stainless steel X5CrNi18-10 (1.4301) with different thicknesses. The welding parameters depending on the gap between the welded plates remain constant. In the experimental part of the samples were welded using the Yb:YAG laser and compared to the tensile test, macrostructure, microstructure and Vickers hardness. At the end of the thesis are drawn experimental results.
92

Investigation into a Laser Welded Interconnection Method for Interdigitated Back-Contact(IBC) Solar Cell Modules

January 2019 (has links)
abstract: Interconnection methods for IBC photovoltaic (PV) module integration have widely been explored yet a concrete and cost-effective solution has yet to be found. Traditional methods of tabbing and stringing which are still being used today impart increased stress on the cells, not to mention the high temperatures induced during the soldering process as well. In this work and effective and economical interconnection method is demonstrated, by laser welding an embossed aluminum (Al) electrode layer to screen-printed silver (Ag) on the solar cell. Contact resistivity below 1mΩ.cm2 is measured with the proposed design. Cross-sectional analysis of interfaces is conducted via Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDXS) methods. Typical laser weld phenomenon observed involves Al ejection at the entrance of the weld, followed by Al and Ag fusing together mid-way through the weld spot, as revealed by cross-sectional depth analysis. The effects of voltage and lamp intensity are also tested on the welding process. With the range of voltages tested, 240V seems to show the least process variability and the most uniform contact between Al and Ag layers, upon using an Ethylene-Vinyl Acetate (EVA) encapsulant. Two lamp intensities were also explored with a Polyolefin (POE) encapsulant with Al and Ag layers seen welded together as well. Smaller effect sizes at lamp 2 intensity showed better contact. A process variability analysis was conducted to understand the effects of the two different lamps on welds being formed. Lamp 2 showed a bi-modal size distribution with a higher peak intensity, with more pulses coupling into the sample, as compared to lamp 1. / Dissertation/Thesis / Masters Thesis Materials Science and Engineering 2019
93

Microstructure and Mechanical Properties of the Fusion and Heat-Affected Zones of a Laser Welded DP780 Steel

Smith, Heather January 2015 (has links)
Bead-on-plate laser welds were made on an industrially produced DP780 steel to determine the effect of normalized welding heat input on the microstructure and mechanical properties within the weld fusion zone (FZ) and heat affected zone (HAZ) with reference to the base material (BM) mechanical properties. Normalized welding heat input was calculated using an established model from the literature utilizing measurements from the weld cross-section microstructures along with known materials properties. Microhardness profiles and optical microscopy were employed to evaluate materials properties and microstructural changes across the various microstructural zones of each weld. The mechanical properties of the welds were evaluated globally through standard ASTM tensile specimens as well as through a series of specialized mechanical testing sample geometries which examined the properties of individual microstructural zones. These specialized sample geometries included non-standard uniaxial and plain strain tension where effective stress and effective strains were used to compare the mechanical properties across samples. It was determined that there was a good correlation between ASTM standard samples and the specialized sample geometries employed in this study and that the UTS and YS values obtained in both cases were comparable. Sigmoidal decay behaviour was observed in the UTS and YS with increasing heat input for both the FZ and HAZ of all welds. It was found that welds with heat inputs greater than 60 J/mm2 had both a UTS and YS which were significantly depressed in the FZ and HAZ when compared to the base material values. Conversely, welds with heat inputs below 36.3 J/mm2 were found to have a UTS and YS in both the FZ and HAZ microstructural zones which were above the values determined for the BM. When global weld properties were tested, it was found that welds with a heat input greater than 60.0 J/mm2 failed within the HAZ while welds with heat inputs below 36.3 J/mm2 failed within the BM. It has been shown that there is a significant correlation between the heat inputs of laser welded DP steels and both the mechanical properties and microstructural features of the various microstructural zones as well as the location of failure during weld tensile testing. It has also been demonstrated that the mechanical properties of weld microstructural zones can be qualitatively evaluated using specialized tensile testing geometries. / Thesis / Master of Applied Science (MASc)
94

Effect of Preferential Vaporization during Laser Rewelding on the Solidification and Cracking Response of Type 304L Stainless Steel Alloys with Systematically Varied Manganese Contents

Berger, Jason E. 15 August 2018 (has links)
No description available.
95

Custom Beam Shaping for High-Power Fiber Laser Welding

Victor, Brian M. 26 June 2009 (has links)
No description available.
96

Temperature profiles and hardness estimation of laser welded heat affected zone in low carbon steel

Lundberg, Axel January 2014 (has links)
Termisk modellring av hårdhet genom beräkning och simulering av den värmepåverkade zonen i en lasersvetsad stålplatta är en omfattande process. Dock är analysen viktig då mikrostrukturella fastransformationer förorsakade av svetsningen kan ge oönskade hårdhetsnivåer av den värmepåverkade zonen jämfört med hårdeheten i basmaterialet. I denna avhandling har analytiska ekvationer implementerats och testats för validitet mot simuleringar gjorda av andra författare och mot experimentella värden.Eftersom termisk modellering av svetsar är ett omfattande område var avhandlingen tvungen att smalnas av för att göra analysen mer fokuserad. Begränsningar gjordes för den matematiska modelleringen genom att endast titta på två-dimensionellt värmeflöde i svetsade plattor där endast den analytiska lösningen är av intresse. Arbetet har också inriktats mot stål då detta material är vida använt över hela världen. Då lasersvetsning är en snabb och kostnadseffektiv process så är hårdhetsanalysen av största vikt. Avhandlingen är uppdelad i tre övergripande delar; den första är att ta fram och förstå arbetet som gjorts inom termisk modellering av svetsar, alltså förstå matematiken bakom problemet. Modelleringen är till för att producera diagram parametrar från en termisk cykel, för att kunna fortgå med korrekt hårdhets analys. För det andra så sätts den matematiska modelleringen på prov i ett antal situationer som var och en simulerar olika förutsättningar. Detta gjordes i ett grafiskt användargränssnitt av ren bekvämlighet. Detta gör att ingenjörer lätt kan implementera olika egenskaper för materialet och få fram diagram och kurvor.Sist, ett liknande grafisk användargränssnitt för att simulera hårdheten i valfri punkt i den värmepåverkade zonen programmerades och därigenom implementerades ekvationerna som denna avhandling handlar om i grund och botten. En teoretisk bakgrund till fasomvandlingen är också inkluderad som förklaring till grundproblemet med oönskad hårdhet i den värmepåverkade zonen i lasersvetsat stål.Huvudslutsatser i avhandlingen:•Matematisk modellering av värmeöverföring i svetsar genomförd av Rosenthal är fortfarande applicerbar på modern lasersvetsningsapparatur. •Den empiriska modellen från Ion et al. (1984) är ej applicerbar med godkänt resultat för hårdhetsuppskattning.•Ekvationerna från Ion (2005) är statistiskt godkända för att simulera hårdhet.•Den analytiska lösningen är överlägsen den numeriska när det gäller snabb och enkel implementering för att simulera termiska cykler och hårdhet, medan den numeriska lösningen kan ta i beaktning mera avancerade egenskaper.•Förvärming av stålet innan svetsning kan vara mycket fördelaktigt för hårdheten i den värme-påverkade zonen, speciellt vid högre kolekvivalent. / Thermal modelling of hardness in the heat-affected zone (HAZ) in a laser welded steel plate is a cumbersome process both in calculation and simulation. The analysis is however important as the microstructural phase transformations induced by welding may cause unwanted hardness levels in the HAZ compared with that of the parent material. In this thesis analytical equations have been implemented and checked for validity against simulations made by other authors and against experimental values.With such a large field as thermal modelling, the thesis had to be narrowed down to make the analysis more subject focused. Limitations made were for mathematical modelling only looking at a two-dimensional heat flow in welded plates; in this thesis only the analytical solution to the heat flow is considered. The work was also directed towards steel; such a material as used largely all over the globe. As laser welding is a fast and cost-effective process, an analysis of hardness is of great importance. Work was divided into three overlapping parts; the first was to derive and understand the work done in the field of thermal modelling of welds, thus understanding the mathematics behind the basic problem. This modelling provides a number of curves and parameters from a thermal cycle, thus enabling one to do the hardness analysis correctly. Secondly, this mathematical modelling was applied to a number of cases, simulating different circumstances. This was done using self-programmed Graphical User Interfaces (GUI) for convenience. This enables engineers to easily plug in the materials and processing properties and thus simulate the required parameters and curves for further analysis.Lastly, a GUI for simulating the hardness of any point in the HAZ was programmed and used, thus implementing and validating the equations. A theoretical introduction of the phases induced in the HAZ is also included, in order of understanding the problems of unwanted hardness in the HAZ of laser-welded steel.Main conclusions of this thesis:•Mathematical modelling of heat transfer in welds by Rosenthal (1946) is still applicable for modern laser welding apparatus.•The empirical model presented by Ion et al. (1984) is not applicable with experimental results of hardness in the HAZ of the steels investigated here.•Equations by Ion (2005) are accurate for simulating the hardness.•The analytical solutions investigated are superior to numerical solutions with regard to quick, simple simulations of thermal cycles and hardness. Numerical solutions allows for more advanced modelling, which can be lengthy.•Preheating the steel prior to welding is favourable in reducing hardness levels, especially with steel of higher carbon equivalent.
97

Estudo e desenvolvimento de um sistema de soldagem a laser Nd:YAG para produção de sementes de iodo-125 utilizadas em braquiterapia / Study and development of an Nd:YAG laser welding system for the production of iodine-125 seeds used in brachytherapy

Feher, Anselmo 15 August 2014 (has links)
O tratamento do câncer de próstata com o implante permanente das sementes de iodo-125 cresceu expressivamente nos Estados Unidos da América nos últimos anos. A técnica também vem sendo utilizada por hospitais e clínicas particulares no Brasil. As sementes utilizadas são importadas a custos elevados, o que as tornam proibitivas para uso em hospitais públicos, pois um implante requer, pelos menos, 80 sementes. Para minimizar custos financeiros e possibilitar a distribuição para entidades de saúde pública, iniciou-se o desenvolvimento da técnica de produção das sementes no País. A soldagem a laser é uma das técnicas de selagem da semente de iodo-125, que é feita nas duas extremidades do tubo de titânio, de modo a permitir a classificação da semente como fonte selada, atendendo aos rigorosos testes estabelecidos nas normas ISO 2919 e ISO 9978. O objetivo deste trabalho foi estudar e desenvolver um sistema alternativo de soldagem a laser Nd:YAG para sementes de iodo-125, com o propósito de fornecer dados de projeto e parâmetros operacionais para implantação de uma produção rotineira automatizada no IPEN-CNEN/SP. O desenvolvimento do trabalho apresentou as seguintes fases: corte e limpeza do material (tubo de titânio), projeto, fabricação e montagem de um sistema completo automatizado para a soldagem dos tubos de titânio, determinação dos parâmetros de soldagem (feixe de laser, gás de assistência e focalização), ensaios dos corpos de prova soldados e avaliação da repetitibilidade e eficiência do sistema. O sistema de soldagem a laser desenvolvido mostrou-se eficaz em virtude do eficiente processo de automação utilizado, capaz de produzir sementes de iodo-125 com soldas de qualidade que atendem aos critérios dos severos ensaios determinados nas normas ISO 2919 e ISO 9978. / The treatment for prostate cancer by permanent implant of iodine-125 seeds has increased significantly in the United States of America in recent years. This technique has also been used by hospitals and private clinics in Brazil. The seeds used are imported at a high cost, which makes them prohibitive for use in public hospitals, since an implant requires, at least, 80 seeds. In order to reduce the financial costs and enable the distribution to public health institutions, the technique for the seeds production in the country has been developed. The laser welding is one of the possible procedures to seal the iodine-125 seeds and it will be performed in both ends of the titanium tube: this will allow the seed classification as a sealed source, meeting the rigorous assays established by the ISO 2919 and the ISO 9978 standards. The objective of this research was to study and develop an alternative Nd:YAG laser welding system for iodine-125 seeds, with the purpose of providing project data and operational parameters for the implementation of an automated routine production at IPEN-CNEN/SP. The development of this work presented the following phases: the material (titanium tube) cutting and cleaning, the project, manufacture and assembly of a complete automated system to weld the titanium tubes. The determination of the welding parameters (laser beam, shield gas and focus), the assays of the welded specimens and the evaluation of repeatability and system efficiency have, also, been carried out. The laser welding system developed showed to be efficient for the automation process used and capable of producing seeds of iodine-125 with high quality weldings, meeting the criteria for the severe assays determined by the ISO 2919 and the ISO 9978.
98

Fabrication of precipitation-hardened aluminum microchannel cooling plates for adsorption-based hydrogen storage systems

Supriya, Pawar V. 21 March 2013 (has links)
The need for clean and renewable fuel such as hydrogen is driven by a growing worldwide population and increasing air pollution from fossil fuels. One of the major barriers for the use of hydrogen in automotive industry is the storage of hydrogen. Physisorption is the most promising storage technique due to its high storage density, reversibility and rapid sorption kinetics besides being safe and volume-efficient. A major challenge for physisorption is the need to manage the heat of adsorption at cryogenic temperatures. In this thesis, a 6061 aluminum microchannel cooling plate is designed to remove the equivalent heat flux required by the adsorption of hydrogen within an adsorption bed. Therefore, the objective of this thesis is to determine whether laser welding and heat treating strategies can be developed for a 6061 aluminum microchannel cooling plate as part of a larger hydrogen storage thermal management system. Key manufacturing process requirements include controlling the hermeticity, strength and dimensional stability of the heat-treated weld joint. A hermetic microchannel cooling plate was successfully laser welded and heat treated using free convection in air to quench the solution heat treatment. The weld strength and warpage obtained were within acceptable limits. Experimental testing of the fabricated microchannel cooling plate showed acceptable percent error with an experimental heat removal rate within 13.4% of computational fluid dynamics (CFD) analyses and an average pressure drop error of 25%. Calculations show that the cooling plate developed could support a hydrogen storage thermal management system taking up 5.0% and 10.3% of the system displacement volume and mass, respectively. / Graduation date: 2013
99

Studies On Dissimilar Metal Welding

Bhat, K Udaya 01 1900 (has links)
The area of research dealing with joining of dissimilar metals has been active in recent time. Although fusion and non-fusion techniques of joining have been effectively used for manufacturing components, a comprehensive scientific understanding of the process is lacking. This void exists both in fusion and non-fusion welding methods. The present investigation addresses some of these aspects. The investigation consists of two sections - Part A and Part B. Part A is on Friction welding and Part B deals with Fusion welding using laser. Each section has two chapters each. Following an introductory chapter, basic aspects of friction welding is presented in chapter 2. Chapter 3 deals with the work on friction welding of Fe-Cu couple. Fe-Cu couple is a system with positive heat of mixing. After a brief introduction on various non-equilibrium processes that can occur in this system, experimental details and results are presented. Using the results an attempt is made to understand the flash formation, formation of pores at the interface and the formation of chemically altered zone. It is observed that a chemically altered layer forms predominantly on the Cu side of the interface. It consists of Fe entrapped as fragments/fine crystals and as solid solution in Cu matrix. This zone has higher thickness at the edges than at the center. The mechanism of formation of this interfacial layer which is central to the joining process is related to the fracture and transport of fragments during plastic deformation. Fe forms solid solution in copper under non-equilibrium conditions promoted by shear energy. Using the concept of ballistic mixing, the formation of solid solution is explored. Using nano-indentation experiments mechanical properties of the weldment is estimated and an attempt is made to correlate mechanical properties with the amount of second element present in that location. The chapter 4 in part A deals with the friction welding of Ni-Ti couple. Ni-Ti system has negative heat of mixing and it forms a number of intermetallics. After a brief introduction to the chapter, various experimental techniques and strategies followed to carry out the experiments are explained. Following these, the results are presented. It is observed that TiNi3 formed at initial stage. Theories based on effective heat of formation and surface energy also predict the nucleation of TiNi3. With the continuation of frictional processes, the formation of TiNi and Ti2Ni phases were also observed. Formation of Ti2Ni was shown to greatly accelerate due to shear process. In this system two complementary processes like ballistic mixing and thermal assisted diffusion accelerate Ti2Ni formation. From mechanical tests it is found that Ti2Ni layer in the weldment is weak and hence formation of Ti2Ni in the weldment is detrimental. In chapter 5 an introduction to fusion welding of dissimilar metals is presented as background materials for the subsequent chapters. Chapter 6 deals with nature of segregation of Ag during laser welding of Fe-Ni couple. Ag is used as a tracer to probe fluid flow in the Fe-Ni couple during laser welding. Ag is immiscible both in Fe and Ni whereas Fe and Ni form a complete solution at an elevated temperature and in liquid state. Besides the experimental work, numerical simulation of the weld pool were carried out using homogeneous mixture model using SIMPLER algorithm. Experiments and simulations indicate that fluid flow is asymmetrical and in the deep penetration welding strong convection in the pool drives the tracer to the top of the pool. Overall distribution of the tracer is due to the combined effect of convection and diffusion. In shallow welding there exists a boundary region where tracer does not penetrate. In chapter 7 the results of instrumented indentation experiments on laser welded Fe-Cu weldment has been presented. It was earlier reported that during laser welding of Fe-Cu couple, a variety of microstructures evolves at various locations in the weldment and hardness of the weldment were found to be very high. Here an attempt has been made to explore in details the origin of such a high hardness. The chapter starts with a description of various microstructures that are observed in this weldment followed by the various procedures used for extracting data from instrumented indentation tests. It is followed by the presentation of the experimental results. It is found that rule of mixture along with Hall-Petch strengthening explains the observed increase in hardness of the weldment. The fine scale microstructure consisting of alternate Fe rich and Cu rich layers increases the hardness of the weldment. On copper side of the weldment, composition and scale of microstructure fluctuates and so also the hardness. Finally in chapter 8 overall conclusions of the various chapters in the thesis have been summarised.
100

Study of process parameters in laser beam welding of copper hairpins

Lönn, Dan, Spångberg, David January 2022 (has links)
This study had the purpose to further the use of industrial lasers in the manufacturing of hairpin electric motors by optimizing the process of contacting the hairpins. A problem with laser beam welding of copper is the porosity created in the process which can lead to increased resistance of the welded region along with degraded mechanical properties. By experiment this study aimed to find the optimal parameters to reduce the porosity while maintaining all other requirements for the weld. The track of achieving a satisfactory simulation was done to minimize the need of physical experiments which can be argued as a sustainable development aspect. A set of parameters was found that achieved a low volume of pores, a sufficient weld depth and a desirable bead geometry. Some pores still remained, mostly at the endpoint of the laser path which could be caused by the laser shut-off leading to a keyhole collapse enclosing some pores in that region. The simulation showed promising results in welding depth and melt region. Further work on ramping the laser power at the endpoint could be beneficial for eliminating the remaining porosity as well as refining the simulation in terms of porosity.

Page generated in 0.1267 seconds