• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

En jämförelsestudie mellan punktmoln framställda med UAS-fotogrammetri och Laserdata NH på ett industriområde i Västsverige / A comparative study of point clouds generated from UAS-photogrammetry and Laserdata NH of industrial area in West Sweden

Eskina, Ksenija, Watoot, Ali January 2020 (has links)
Framställning av digitala terrängmodell (Digital Terrain Model, DTM) är en viktig del för projekteringsunderlag vid markrelaterade frågor. Grunden för en DTM är punktmolnet som innehåller grunddata från mätningen. DTM är användbara i många olika områden, kvalitén bestäms beroende på vilken uppdrag som DTM gäller för. UAS-fotogrammetri är en av metoder som tillämpas för att framställa en DTM, det går även att framställa en DTM utifrån punktmoln från Laserdata NH. En DTM är en modell av endast markyta, där data samlas genom mätning av ett visst objekt. Syftet med detta examensarbete som är utfört vid Institutionen för ingenjörsvetenskap vid Högskolan Väst var att jämföra två olika metoder för framställning av ett punktmoln som är till underlag för en DTM. Punktmoln som framställs med egna mätningar från UASfotogrammetri och ett färdigt punktmoln från Laserdata NH. Målet med jämförelsen är att undersöka om det går att ersätta UAS-fotogrammetri med den kostnadseffektiva Laserdata NH i projektet för ett industriområde (Lödöse varvet) i Lilla Edets kommun, samt om det går att ersätta den överlag. Med hjälp av Agisoft Metashape programvaran framställdes det punktmolnet från mätning från UAS av modellen DJI Phantom 4 Advanced, sedan jämfördes den mot det färdiga punktmolnet från Laserdata NH i CloudCompare programmet. Resultatet på denna studie visar att det går att ersätta UAS-fotogrammetri mot Laserdata NH i just denna och andra liknande projekt som har samma syfte och viss bestämd noggrannhet då punktmolnen inte avviker signifikant från varandra. Medan det inte går att ersätta de mot varandra överlag, då UAS-fotogrammetri erhåller högre noggrannhet när det gäller framställning av ett punktmoln jämfört med vad Laserdata NH har för noggrannhet på sina mätningar / Generation of Digital Terrain Model (DTM) is an essential part in project planning in questions related to spatial planning. Basis for the DTM is the point cloud which obtains initial data from the measurement. DTM can be used in different areas, accepted quality level is depending on the assignment for which DTM is produced. UAS-photogrammetry is one of the methods which is used for DTM generation, but it is possible to produce DTM from point cloud originated from Laserdata NH. A DTM is a model representing entirely terrain surface, where the data used for its generation gathers from measuring of a certain object. The purpose of this study accomplished at Department of Engineering Science at University West was to compare two different methods for point cloud generation as a basis for DTM. First point cloud generated comes from own measurement with UAS-photogrammetry and second is a point cloud from acquired Laserdata NH. The goal of the comparison is to examine if it is possible to replace UAS-photogrammetry with the cost effective Laserdata NH in the project for the industrial area (Lödöse varvet) in Lilla Edet municipality, and if it is possible to replace it generally. With help of Agisoft Metashape software the point cloud from UAS-measurement with DJI Phantom 4 Advanced was generated and then compared to Laserdata NH point cloud in CloudCompare program. Result of this study is showing that it is possible to replace UAS-photogrammetry with Laserdata NH in this specific and others similar projects which have same purpose and certain decided precision since point clouds are not significantly deviating from each other. While it is not possible to replace them generally, as UAS-photogrammetry obtains higher precision concerning point cloud generation compared to accuracy that Laserdata NH has in its measurements.
2

Utvärdering av två digitala terrängmodeller på öppna ytor : Framställda med NRTK-GNSS och Laserdata NH

Castenvall, Anna, Petersson, Elin January 2020 (has links)
En digital terrängmodell (DTM) representerar endast markytans form och har en bred användning inom t.ex. samhällsplanering. Det finns olika framställningsmetoder för att skapa en DTM, där de mest använda metoderna är mark- eller flygburen laserskanning samt terrester- eller satellitbaserad mätning. Flygburen laserskanning (FLS) använder sig av tekniken LiDAR (Light Detection And Ranging) där avstånd mäts med laser. Lantmäteriet påbörjade ett projekt 2009, vilket gick ut på att laserskanna hela Sverige med FLS och projektet blev klart 2019. Resultatet blev Laserdata NH (Nationella Höjdmodellen) med en lägesnoggrannhet i höjd på 0,1 m. Syftet med studien är att kontrollera mätosäkerheten för Laserdata NH samt undersöka om den kan ersätta terrestra mätningar, t.ex. GNSS vid skapande av DTM:er. Studieområdet är ca 0,85 ha och består av en gräsyta omgiven av grusvägar. Området är beläget i Teknikparken, Gävle. För att se ifall Laserdata NH kan ersätta GNSS-mätningar skapades en DTM från Laserdata NH samt en DTM från mätningar med NRTK-GNSS. Alla inmätningar följde de krav och toleranser vilka specificeras i SIS-TS 21144:2016. För att kunna kontrollera mätosäkerheten för Laserdata NH mättes kontrollprofiler in, vilka agerade som referens. Kontrollprofilerna användes även som referens när de båda DTM:erna jämfördes mot varandra. Max- och min avvikelse, medelavvikelse, standardosäkerhet samt RMS räknades ut på varje enskild profil, per markyta och för de två modellerna. Beräkningarna utfördes för att se ifall värdena låg för högt eller för lågt i någon del av ett område samt för att kunna se sannolikheten för systematiska avvikelser. En statistisk analys utfördes för att se ifall det finns någon skillnad mellan DTM och kontrollprofilernas medelavvikelse. Resultatet visade att det fanns en statistisk signifikant avvikelse på medelavvikelsen mellan DTM skapad av Laserdata NH och kontrollprofiler för både grus- och gräsytorna. Detta innebär att Laserdata NH inte kan ersätta NRTK-GNSS på öppna, jämna gräsytor eller plana grusytor. Kontrollerna av de två DTM:erna klarar toleranserna enligt SIS-TS 21144:2016 och anses vara tillförlitliga. Studien kom till slutsatsen att Laserdata NH kan användas utan komplettering till översiktliga planeringar. Detaljerade analyser med Laserdata NH behöver dock kompletteras med ytterligare mätningar eller ortofoto för att erhålla mer trovärdiga resultat. / A Digital Terrain Model (DTM) only represent the surface and has a broad application within, for example, community planning. There are different ways of producing a DTM, with the most common methods being ground- or airborne laser scanning and terrestrial- or satellite based measurement. Airborne laser scanning (ALS) uses the technique LiDAR (Light Detection and Ranging) which measures distances with laser. Lantmäteriet, the Swedish cadastral mapping and surveying authority, began in 2009 with a project to scan entire Sweden with ALS and was finished in 2019. The outcome of the project was a new national height model that is called Laserdata NH with a positional accuracy of 0,1 m in height. The purpose of this bachelor thesis is to study the uncertainty of Laserdata NH and to investigate if it can replace terrestrial measurements, for example replacing Laserdata NH with GNSS mapping. The study area is approximately 0,85 hectares and consists of a grassland area surrounded by gravel paths. The area is located in Teknikparken, Gävle. To see if Laserdata NH can replace GNSS-measurements a DTM was created from Laserdata NH as well as a DTM created from measurements with NRTK-GNSS. All measurements followed the requirements and tolerances according to SIS-TS 21144:2016. To control the uncertainty for Laserdata NH, control profiles were measured, which acted as a reference. The control profiles were also used as a reference when comparing the two DTMs. Max and min deviation, mean deviation, standard deviation and RMS were calculated for each profile, per ground area and using two models. The calculations were performed to see if the values were too high or too low in any part of an area and to be able to see the probability of systematic deviations. A statistical analysis was performed to see if there were any difference between the DTM and the mean deviation of the control profiles. The result showed that there was a statistic significant deviation on the mean deviation between the DTM created by Laserdata NH and the control profile for both the gravel and the grass surface. This means that Laserdata NH cannot replace NRTK-GNSS on open, plain grass or gravel surfaces. The controls of the two DTMs are within the tolerances according to SIS-TS 21144:2016 and are considered reliable. The study concluded that Laserdata NH can be used without supplement to do general plans. However, for detailed analysis Laserdata NH needs to be supplemented with additional measurements or orthophoto.
3

Kvalitetsundersökning av de globala höjdmodellerna Copernicus GLO-30 DEM och FABDEM över tre områden i Sverige

Jakobsson, Jennifer, Stolpe, Louise January 2022 (has links)
Höjddata är fundamentala inom en mängd applikationer. Genom att skapa en digital höjdmodell (DEM), d.v.s. en matematisk modell av terrängens fysiska form, kan höjddata nyttjas på ett effektivt sätt. Tillgång till digitala höjdmodeller underlättar både vid hållbar samhällsplanering och övervakning av klimatförändringar. Vid tillämpning av en DEM är det av största intresse att veta hur väl modellen representerar jordytan. Den centrala delen av studien innefattar en granskning av de två globala höjdmodellerna Copernicus GLO-30 DEM och FABDEM (Forest And Buildings removed Copernicus DEM) som jämförs med svenska referensmodeller baserade på nationella LiDAR-data (Light Detection And Ranging). Genom generering av en egen ytmodell från punktmolnet Laserdata NH framställdes referensdata för jämförelser med Copernicus GLO-30 DEM. Som referensdata för jämförelser med FABDEM användes GSD-Höjddata Grid 2+, vilket är ett markmodellsraster. Utvärderingen utfördes över tre provytor i Sverige. Dessa provytor representerar karaktäristiska marktyper inom landet. I granskningen av kvaliteten för de globala modellerna analyserades statistik för jämförelserna. Dessutom skapades plottar för att kunna visualisera höjdskillnaderna. Studien innehåller även en litteraturstudie om hur de globala modellerna har skapats. Skaparna av Copernicus GLO-30 DEM garanterar en utvidgad standardosäkerhet med täckningsgraden 90% (LE90) på 4 m. Den här studien resulterade i lite högre utvidgade osäkerheter, mellan ca 4,3 och 6,1 meter. Den lägsta osäkerheten uppnåddes i provytan över Stockholm som innehåller höga byggnader, vatten och en del vegetation. De mest avgörande avvikelserna för FABDEM kan kopplats till svagheter i metoden att framställa en markmodell från ytmodellen Copernicus GLO-30 DEM, men FABDEM påverkas också signifikant av brister i den underliggande modellen, d.v.s. i Copernicus GLO-30 DEM. / Elevation data is fundamental in a variety of applications. By creating a digital elevation model (DEM), i.e. a mathematical model representing the physical shape of the surface of the Earth, altitude data can be used effectively. Access to digital elevation models facilitates both sustainable spatial planning and monitoring of climate change. When applying a DEM, it is of greatest interest to know how well the model represents the earth's surface. The central part of the study includes a review of the two global height models Copernicus GLO-30 DEM and FABDEM (Forest And Buildings removed Copernicus DEM), which are compared with reference models based on Swedish national LiDAR data (Light Detection And Ranging). By generating its own surface model from the point cloud Laserdata NH, reference data was produced for comparisons with Copernicus GLO-30 DEM. GSD-Elevation data Grid 2+, which is a terrain model in grid format, was used as reference data for comparisons with FABDEM. The evaluation was performed over three test areas in Sweden. These test areas represent characteristic land types within the country. In the review of the quality of the global models, statistics for the comparisons were analysed. In addition, plots were created to be able to visualize the height differences. The study also includes a literature study on how the global models have been created. The creators of the Copernicus GLO-30 DEM guarantee an extended standard uncertainty at 90 % coverage probability (LE90) of 4 m. This study resulted in somewhat larger expanded uncertainties (90 %), between about 4.3 and 6.1 meters. The lowest uncertainty was achieved in the sample area over Stockholm, which contains tall buildings, water and some vegetation. The most significant deviations for FABDEM can be linked to weaknesses in the method of producing a terrain model from the surface model Copernicus GLO-30 DEM, but FABDEM is also significantly affected by the deficiencies in the underlying model, i.e. in Copernicus GLO-30 DEM.

Page generated in 0.0474 seconds