• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • Tagged with
  • 10
  • 10
  • 8
  • 8
  • 8
  • 7
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Grundyteskattningars noggrannhet i barr- och lövskog inom projektet ”Skogliga skattningar med laserdata” / The accuracy of basal area estimation in coniferous and broadleaved forests within the project ”Forest estimation with laser data”

Forssén, Bengt January 2015 (has links)
Regeringen har gett Skogsstyrelsen i uppdrag att genomföra ett projekt för att skatta ett antal skogliga variabler från data baserade på Lantmäteriets skanning för den nya nationella höjdmodellen. Syftet med det här examensarbetet var att på beståndsnivå undersöka noggrannheten i barr- och lövskog hos skattade grundytor som tagits fram i  Skogsstyrelsens projekt ”Skogliga skattningar med laserdata”. Undersökningen utfördes som en kvantitativ studie i form av en jämförelse av laserbaserade skattningar från Skogsstyrelsens projekt med grundytor uppmätta i fält. Medelvärdet av fältmätta grundytor i de 18 bestånd som ingick i studien var 26,7 m²/ha och medelvärdet av de skattade grundytorna var 26,3 m²/ha. För enskilda bestånd, varierade differensen mellan -31,7 % och +50,5 %. Slutsatsen var att laserskattningarna från projektet ”Skogliga skattningar med laserdata” är relativt säkra över ett större område, t. ex. på fastighetsnivå. På beståndsnivå får man vara mer försiktig i tolkningen av resultaten från skattningarna, då felen var så pass stora i enskilda bestånd. Undersökningen visade också att skattningarna av grundytan i barrskogsbestånd är mer noggrannt skattade än grundytan i lövdominerade bestånd, fram för allt när lövandelen är över 50 %.
2

Vegetation och lutningars påverkan på osäkerheten hos laserdata för en ny nationell höjdmodell

Kulla, Hanna, Mörtberg, Maria January 2012 (has links)
Lantmäteriet har fått i uppdrag att ta fram en Ny Nationell Höjdmodell (NNH) över Sverige. Höjddata samlas in med flygburen laserskanning (FLS) och osäkerheten i höjd ligger generellt sett under 0,1 m på hårda plana ytor, dock kan osäkerheten öka avsevärt i terrängtyper med tät vegetation eller i områden med starkt sluttande terräng. Syftet med detta examensarbete är att kontrollera hur osäkerheten påverkas av olika vegetationstyper samt olika lutningsgrader. Provningen utfördes i delar av Avesta och Hedemora kommun i april 2012, där nio olika provytor kontrollerades enligt den tekniska specifikationen SIS-TS 21145:2007 ”Byggmätning – Statistisk provning av digital terrängmodell”. Kontrollprofiler mättes in i provytorna med Nätverks Real Time Kinematic Global Navigation Satellite System (NRTK-GNSS) för de provytor detta var möjligt, övriga provytor inmättes med totalstation. Analysen genomfördes i programvaran TerraScan där triangulerat laserdata jämfördes mot inmätta kontrollprofiler. Resultatet visar att laserdata ligger högre än markytan för alla provytor. Medelavvikelsen för de olika vegetationstyperna ligger mellan 0,105 och 0,593 m där systematiska avvikelser upptäcktes i flera provytor. För de olika lutningsgraderna ligger medelavvikelsen mellan 0,024 och 0,122 m, där en tydlig ökning sker vid 40 graders lutning. Troliga orsaker till de medelavvikelser som erhållits för vegetationstyperna är att punkter felaktigt klassificerats som mark, samt att det i vissa fall helt saknas punkter på markytan. För provytan med 40 graders lutning beror medelavvikelsen troligen på att det horisontella felet har inverkat på det vertikala. Tät vegetation påverkar osäkerheten i höjd men något tydligt samband mellan lutningsgrad och osäkerhet kan inte ses. / Lantmäteriet – the Swedish mapping, cadastral and land registration authority, has been commissioned to develop a new national elevation model of Sweden and the data is collected by airborne laser scanning. The uncertainty in height is generally less than 0,1 m on hard, flat surfaces but in terrain with dense vegetation and areas with high inclination the uncertainty can increase significantly. The purpose of this study is to check how the uncertainty is affected by different vegetation types and different degrees of inclination. The control was performed in parts of Avesta and Hedemora municipality in April 2012, where nine different plots were checked according to the technical specification SIS-TS 21145:2007 “Engineering survey for construction works – Statistical test of digital terrain model”. Profiles were measured with Network Real Time Kinematic Global Navigation Satellite System (NRTK-GNSS) where possible, and otherwise a total station was used. The analysis was performed in the software TerraScan in which triangulated laser data were compared with the control profiles. The result shows that laser measured heights are higher than the actual surface. The average deviation of the different vegetation types range from 0,150 to 0,593 m and a systematic deviation was detected in some sample surfaces. For the different slope rates the average deviation ranged from 0,024 to 0,122 m where a clear increase could be seen at 40 degrees inclination. Likely reasons for the deviations obtained for different vegetation types are that points incorrectly has been classified as ground, and that in some cases points on the ground are completely missing. The mean deviation for the sample surface with 40 degrees inclination is probably due to the influence of a horizontal error on the vertical error. Dense vegetation affects the uncertainty in height, but no apparent relationship between inclination and uncertainty can be seen.
3

Transformation av geodetiska höjdnät med flygburen laserskanning : En inledande genomförbarhetsstudie

Dalheimer, Jan January 2018 (has links)
När kraven på mätosäkerhet är hög vid geodetiska mätningar behövs geodetiska referenssystem realiserade av geodetiska nät av hög kvalitet. Etableringen och transformation till överordnade referenssystem i höjd av dessa nät genomförs idag ofta med terrestra metoder som avvägning, vilket är ett noggrant men tidskrävande arbete. Det finns flera försök att använda sig av andra metoder såsom GNSS, men en möjlighet skulle även vara att använda punktmoln från flygburen laserskanning. Detta arbetes syfte är att undersöka om punktmoln kan användas till transformation av ett geodetiskt höjdnät i Sandvikens kommun. Nätet består av cirka 500 fixpunkter och har 2010 transformerats till RH2000 av Lantmäteriet. Det använda punktmolnet har producerats av Lantmäteriet och har en medelavvikelse om 0,05 m på plana hårdgjorda ytor. Detta är relativt högt då vanligen osäkerheter på millimeternivå önskas vid transformationer. Men eftersom medeltal kan reducera slumpmässiga avvikelser i enskilda mätningar kan en transformation bestående av ett medelhöjdskift möjligen ge ett tillfredsställande resultat. Medelhöjdskiftet är då ett medeltal av flera höjdskift beräknade på olika ställen i punktmolnet. Genom att avväga höjdskillnaden mellan fixpunkterna i nätet och punkter på markytan som med olika metoder höjdbestäms utifrån punktmolnet har höjder för fixpunkterna enligt punktmolnet erhållits. Dessa har jämförts med RH2000 höjder enligt Lantmäteriets transformation för att beräkna en avvikelse, samt med de äldre lokala höjderna för att beräkna ett höjdskift. Genom att beräkna medelvärde och dess osäkerhet för höjdskiftet över hela nätet har en uppfattning om metodens lämplighet erhållits. Höjdskiften låg överlag inom några millimeter från det som Lantmäteriet beräknat, med 3 mm osäkerhet för den överlag bästa metoden. Även om höjdskiftets och därmed transformationens osäkerhet delvis blev något hög jämfört med avvägning så kan punktmoln ändå vara ett lämpligt alternativ. Speciellt i mera avlägsna områden utan bra anknytningar till det överordnade nätet kan det vara intressant. Det finns dock många parametrar som ännu inte utforskats, bland annat vissa eventuella systematiska avvikelser. / When the requirements on accuracy and precision are high for geodetic measurements you need geodetic reference systems realized with geodetic control networks of high quality. Today, establishment and transformation to higher order reference systems for height usually uses terrestrial methods like levelling. While highly accurate these result in time consuming work. There have been a couple attempts at using other methods for this task, for example GNSS, but another possibility might be usage of point clouds from airborne laser scanning. As a starting point for further studies this study attempts to use point clouds to transform a geodetic height network in Sandviken municipality, Sweden. The network consists of around 500 benchmarks and has been transformed to the national reference system for height, RH2000, by the Swedish national geodetic survey (Lantmäteriet) in 2010. The point cloud used is also produced by Lantmäteriet and is said to have a mean error of 0,05 m. This is relatively high since the requirements usually are in the millimeter range when determining transformation parameters, but if the transformation only consist of a single height shift calculated as a mean from several height shifts derived from the point cloud any random errors in the point cloud should be reduced. By measuring the height difference between benchmarks and points on the ground, that through different methods are given heights according to the point cloud, heights of the benchmarks have been determined according according to the point cloud. These can be compared to heights in RH2000 according to the transformation performed by Lantmäteriet to see their deviation from the assumed true value. Further comparisons against the older local heights of the benchmarks give a height shift that can be used as a simple transformation. By calculating a mean and uncertainty an estimation of the suitability of the method can be achieved. The all height shifts deviated a few millimeters from the result Lantmäteriet got, with uncertainties around 3 mm for the overall best method. Even if the uncertainty of the shift and therefore the transformation ended up somewhat high compared to what Lantmäteriet achieved it is still believed that point clouds may be or become a viable alternative. Especially in more remote regions without good connections to the higher order network. There are many parameters that have not yet been explored though, as well as some potential systematic errors that should be further investigated.
4

Kvalitetsundersökning och jämförelse av Laserdata NH och Laserdata Skog : Olika terrängtypers inverkan på punktmolnets återgivning av markytan / Quality survey and comparison of Laserdata NH and Laserdata Skog : The impact of different terrain types on the point cloud´s representation of the ground surface

Karlsson, Henrik January 2021 (has links)
Flygburen laserskanning är en effektiv metod för insamling av höjddata över stora områden och används därför frekvent som underlag till digitala höjdmodeller, både på nationell och regional nivå (Wehr & Lohr 1999). Fördelen med insamlingsmetoden är att de utsända laserpulserna reflekteras på både markytan och objekten ovan mark, exempelvis vegetation, byggnader och liknande. På så vis genereras ett tredimensionellt punktmoln från vilket ytterligare produkter kan genereras. Den uppskattade eller uppmätta kvaliteten hos LiDAR-data gäller generellt för hela skanningsområdet. Men det kan vara av intresse att utföra en mer djupgående analys av kvaliteten för att se hur den skiljer sig mellan olika terrängtyper. På uppdrag av Arvika kommun ska en kvalitetskontroll av Lantmäteriets andra rikstäckande laserskanning ”Laserdata Skog” utföras. I dagsläget arbetar man med Laserdata NH, syftet med studien är således att ge Arvika kommun en mer nyanserad uppfattning av kvaliteten hos Laserdata Skog så att framtida arbeten kan ske på ett tillförlitligt sätt med en djupare förståelse kring datat. En jämförelse med Lantmäteriets första rikstäckande laserskanning ”Laserdata NH” kommer även utföras. Jämförelsen mellan de två laserskanningarna sker främst av ett teoretiskt intresse för att utreda hur stor skillnaden är mellan dem, framtida arbeten med laserdata kommer troligtvis att ske med den nya ”Laserdata Skog”.   För att utföra studien tillämpas den tekniska specifikationen SIS-TS 21144:2016 ”Byggmätning – Specifikationer vid framställning och kontroll av digitala markmodeller”. Inmätning av referensdata utfördes med både GNSS-utrustning och totalstation. De terrängtyper som har inkluderats i studien är: asfaltsyta, grusyta, lövskog, barrskog och gräsyta. För varje terrängtyp selekterades 2 provytor för att uppnå en god representation av de enskilda terrängtyperna. För att möjliggöra en koordinatjämförelse mellan laser- och referensdata så interpolerades punktmolnet till en TIN-yta. Resultatet visar att det uppstår differenser mellan Laserdata NH och Laserdata Skog för de statistiska mått som har beräknats. Laserdata NH erhåller förvånansvärt låga avvikelser. En övergripande trend är dock att Laserdata Skog har de lägre avvikelserna. Att fastställa orsakerna till dessa är dock svårt då det finns ett flertal faktorer som spelar in. Sammanfattningsvis erhåller Grusyta det lägsta RMSE-värdet (0,021 m) i Laserdata NH och i Laserdata Skog är det Asfaltsyta (0,017 m). Det högsta RMSE-värdet hittas i Barrskog för både Laserdata NH (0,198 m) och Skog (0,111 m). / Airborne laser scanning is an efficient method for collecting elevation data over a large area and is therefore frequently used as a basis for digital elevation models, both on a national and regional level (Wehr & Lohr 1999). The advantage of this data collection method is that the emitted laser pulses are reflected both on the ground surface as well as the objects above it, for example the vegetation, buildings or the like. In this way a three-dimensional point cloud can be created from which further products can be generated. The estimated or measured quality of LiDAR data generally applies for the entire scanning area. But it can be interesting to perform a more in-depth analysis of how the quality differs between different types of terrain.  At the request of Arvika municipality a quality survey of Lantmäteriet’s second nationwide laser scanning “Laserdata Skog” will be performed. Work is currently being performed using Laserdata NH, the purpose of this study is thus to give Arvika kommun a more nuanced perception of Laserdata Skog’s quality so that future work can be done in a more reliable way with a deeper knowledge about the data at hand. A comparison between Lantmäteriet’s first nationwide laser scanning “Laserdata NH” will also be performed. The comparison between these two is primarily out of a theoretical interest to examine how the quality differs between them. Future laserdata work will probably be executed using the newer product “Laserdata Skog”. The technical specification SIS-TS 21144:2016 ”Construction measurements – Specifications of production and control of digital terrain models” was applied in the study. Both GNSS-equipment and total station where used in order to collect reference data. The included terrain types are: asphalt, gravel, deciduous forest, coniferous forest and grass. Two areas of interest have been selected for each type of terrain in order to achieve a good representation of each terrain type. In order to perform a coordinate comparison between the laser- and reference data the point cloud from the laserdata was interpolated to a TIN-surface. The results show that there are quality differences between Laserdata NH and Laserdata Skog. Laserdata NH obtains remarkably low deviations. The overall trend is however that Laserdata Skog acquires the lower deviations of the two. Determining the causes of this is difficult, as there are several factors that come in to play. In summary the Gravel terrain type obtains the lowest RMSE-value (0,021 m) for Laserdata NH. The terrain type with the lowest RMSE-value for Laserdata Skog is Asphalt (0,017 m). The highest RMSE-values are found in Coniferous forest for both Laserdata NH (0,198 m) and Laserdata Skog (0,111 m).
5

Kvalitetsundersökning av Laserdata Skog : Terrängtypens inverkan på punktmolnets återgivning av markytan

Lindbom, Johan, Tirén, Karl January 2020 (has links)
Höjddata av god kvalitet är av stor betydelse i många sammanhang, inte minst i samhällets anpassning till ett förändrat klimat. Laserdata Skog är höjddata insamlade från flygburen laserskanning och kommer i färdigt skick att täcka större delen av Sveriges yta. För att sådana data ska kunna användas på bästa sätt är det viktigt att ha kännedom om deras kvalitet. För data från flygburen laserskanning finns det många parametrar som orsakar variation i kvaliteten, där terrängtypens inverkan hör till de mest betydande.  Denna studie utförs på uppdrag av Lantmäteriet och syftar till att undersöka kvaliteten i Laserdata Skog. Fokus ligger på osäkerhet i höjd och punkttäthet, samt hur dessa faktorer varierar mellan olika terrängtyper. Höjdosäkerheten har undersökts genom jämförelser mellan laserdata och terrestra kontrollmätningar, medan punkttätheten har bestämts med beräkningar och observationer i laserdata. Fyra terrängtyper ingår i studien: Hårdgjord yta, Gräsyta, Barrskog och Lövskog. Varje terrängtyp representeras av tre olika provytor, fördelade på olika skanningsområden. Osäkerheten i höjd påverkades av både trädskikt och markvegetation, medan det enbart var variation i trädskiktet som orsakade synbar påverkan på punkttätheten. Osäkerheten i höjd för enskilda provytor varierade mellan 0,011 och 0,183 m (RMS). Punkttätheten varierade mellan 0,66 och 2,09 punkter/m2. För osäkerheten i höjd påträffades ett betydande bidrag från inpassningen av punktmolnet, vilket försvårade analysen av terrängtypens inverkan. / High quality elevation data is of great importance in many contexts, for example in society’s adaptation to climate change. Laser data forest (Laserdata Skog) is elevation data collected from airborne laserscanning, and will cover most of Sweden’s surface when completed. In order for this data to be used in the best possible way, knowledge of its quality is important. Many parameters causes variation in quality for airborne laserdata, and the impact of vegetation is one of the most significant. This study is conducted by request from Lantmäteriet (the Swedish mapping, cadastral and land registration authority) and aims to investigate the quality of Laser data Forest. Uncertainty in height and point density is the main focus, as well as how these factors vary in different types of terrain. Uncertainty in height has been investigated by comparisons between laser data and terrestrial control measurements, while point density has been determined by calculations and observations in laser data. Four types of terrain is included in the study: Impervious surface, Grass, Coniferous forest and Deciduous forest. Each type of terrain is represented by three test surfaces, one in each of three different scanning areas. Uncertainty in height was affected by both trees and ground cover, while the vegetational impact on point density was caused by trees alone. Uncertainty in height for individual test sites varied between 0,011 and 0,183 m (RMS). Point density varied between 0,66 and 2,09 points/m2. For the uncertainty in height, a considerable contribution was found to originate from the alignment of the point clouds, which made the analysis of the impact of the terrain more difficult.
6

Uppdatering av skogsbruksplaner med laserdata : En studie om noggrannhet i skattningar av skogliga variabler / Updating forest management plans with laser data : A study of accuracy in estimations of forest variables

Dahlström, Emma, Zetterlund, Gustaf January 2023 (has links)
Skogsbruksplanen är ett viktigt verktyg för dagens skogsägare. Uppdatering av skogsbruksplaner kräver vanligtvis omfattande fältmätningar för att samla in aktuella data om skogen. En ny metod för att uppdatera skogsbruksplaner har utvecklats av skogsägarföreningen Södra och Field Sweden AB, vilken minskar behovet av manuella fältmätningar. En studie genomfördes för att utvärdera noggrannhet och tillförlitlighet i den nya metoden. Studien indikerade högre noggrannhet i skattningar av volym, grundytevägd medeldiameter och grundytevägd medelhöjd i laserbaserad skogsbruksplan jämfört med konventionell skogsbruksplan. Grundyta var den variabeln som erhöll högst noggrannhet via konventionella skattningar. Metoden bedömdes tillförlitlig, dock bör vidare studier utföras för att säkerställa noggrannhet och tillförlitlighet i laserbaserade skattningar innan metoden implementeras på hela skogsinnehav.
7

Utvärdering av två digitala terrängmodeller på öppna ytor : Framställda med NRTK-GNSS och Laserdata NH

Castenvall, Anna, Petersson, Elin January 2020 (has links)
En digital terrängmodell (DTM) representerar endast markytans form och har en bred användning inom t.ex. samhällsplanering. Det finns olika framställningsmetoder för att skapa en DTM, där de mest använda metoderna är mark- eller flygburen laserskanning samt terrester- eller satellitbaserad mätning. Flygburen laserskanning (FLS) använder sig av tekniken LiDAR (Light Detection And Ranging) där avstånd mäts med laser. Lantmäteriet påbörjade ett projekt 2009, vilket gick ut på att laserskanna hela Sverige med FLS och projektet blev klart 2019. Resultatet blev Laserdata NH (Nationella Höjdmodellen) med en lägesnoggrannhet i höjd på 0,1 m. Syftet med studien är att kontrollera mätosäkerheten för Laserdata NH samt undersöka om den kan ersätta terrestra mätningar, t.ex. GNSS vid skapande av DTM:er. Studieområdet är ca 0,85 ha och består av en gräsyta omgiven av grusvägar. Området är beläget i Teknikparken, Gävle. För att se ifall Laserdata NH kan ersätta GNSS-mätningar skapades en DTM från Laserdata NH samt en DTM från mätningar med NRTK-GNSS. Alla inmätningar följde de krav och toleranser vilka specificeras i SIS-TS 21144:2016. För att kunna kontrollera mätosäkerheten för Laserdata NH mättes kontrollprofiler in, vilka agerade som referens. Kontrollprofilerna användes även som referens när de båda DTM:erna jämfördes mot varandra. Max- och min avvikelse, medelavvikelse, standardosäkerhet samt RMS räknades ut på varje enskild profil, per markyta och för de två modellerna. Beräkningarna utfördes för att se ifall värdena låg för högt eller för lågt i någon del av ett område samt för att kunna se sannolikheten för systematiska avvikelser. En statistisk analys utfördes för att se ifall det finns någon skillnad mellan DTM och kontrollprofilernas medelavvikelse. Resultatet visade att det fanns en statistisk signifikant avvikelse på medelavvikelsen mellan DTM skapad av Laserdata NH och kontrollprofiler för både grus- och gräsytorna. Detta innebär att Laserdata NH inte kan ersätta NRTK-GNSS på öppna, jämna gräsytor eller plana grusytor. Kontrollerna av de två DTM:erna klarar toleranserna enligt SIS-TS 21144:2016 och anses vara tillförlitliga. Studien kom till slutsatsen att Laserdata NH kan användas utan komplettering till översiktliga planeringar. Detaljerade analyser med Laserdata NH behöver dock kompletteras med ytterligare mätningar eller ortofoto för att erhålla mer trovärdiga resultat. / A Digital Terrain Model (DTM) only represent the surface and has a broad application within, for example, community planning. There are different ways of producing a DTM, with the most common methods being ground- or airborne laser scanning and terrestrial- or satellite based measurement. Airborne laser scanning (ALS) uses the technique LiDAR (Light Detection and Ranging) which measures distances with laser. Lantmäteriet, the Swedish cadastral mapping and surveying authority, began in 2009 with a project to scan entire Sweden with ALS and was finished in 2019. The outcome of the project was a new national height model that is called Laserdata NH with a positional accuracy of 0,1 m in height. The purpose of this bachelor thesis is to study the uncertainty of Laserdata NH and to investigate if it can replace terrestrial measurements, for example replacing Laserdata NH with GNSS mapping. The study area is approximately 0,85 hectares and consists of a grassland area surrounded by gravel paths. The area is located in Teknikparken, Gävle. To see if Laserdata NH can replace GNSS-measurements a DTM was created from Laserdata NH as well as a DTM created from measurements with NRTK-GNSS. All measurements followed the requirements and tolerances according to SIS-TS 21144:2016. To control the uncertainty for Laserdata NH, control profiles were measured, which acted as a reference. The control profiles were also used as a reference when comparing the two DTMs. Max and min deviation, mean deviation, standard deviation and RMS were calculated for each profile, per ground area and using two models. The calculations were performed to see if the values were too high or too low in any part of an area and to be able to see the probability of systematic deviations. A statistical analysis was performed to see if there were any difference between the DTM and the mean deviation of the control profiles. The result showed that there was a statistic significant deviation on the mean deviation between the DTM created by Laserdata NH and the control profile for both the gravel and the grass surface. This means that Laserdata NH cannot replace NRTK-GNSS on open, plain grass or gravel surfaces. The controls of the two DTMs are within the tolerances according to SIS-TS 21144:2016 and are considered reliable. The study concluded that Laserdata NH can be used without supplement to do general plans. However, for detailed analysis Laserdata NH needs to be supplemented with additional measurements or orthophoto.
8

Vägmodellering baserad på laserskanning för virtuella fordonssimuleringar / Road modeling based on laser scanning for virtual vehicle simulations

Larsson, Oskar, Hallberg, Jacob January 2019 (has links)
För att kunna konkurrera inom dagens fordonsindustri krävs effektiv produktutveckling. Det är under designprocessen som det finns störst möjlighet att påverka slutprodukten till det bättre. Ett sätt att åstadkomma effektivare produktutveckling är att tillämpa ny teknik. För att generera digitaliserade vägmodeller som används i simuleringar kan laserskanning appliceras. I dessa simuleringar kan fordonen testköras virtuellt och därigenom förkorta dimensioneringsprocessen. Laserskanning av kuperad terräng är komplex och därför saknas det underlag av kuperade testbanor i simuleringar. Denna studie syftar till att presentera olika laserskanningstekniker samt att utöka underlaget för virtuella simuleringar inom dimensioneringsprocessen av dumprar. Målet med arbetet är att skapa virtuella vägsektioner som kan användas i simuleringsmodeller.  Tre huvudtekniker inom laserskanning presenteras i teorikapitlet. Vidare har terrest laserskanning utförts på Volvos testbana i Målajord och med skanningsdata som underlag har en vägmodell som kan användas i fordonssimuleringar skapats i Matlab. Vägmodellen som skapats representerar väl den verkliga körbanan, vilket indikerar att terrest laserskanning är en väl fungerande metod för detta ändamål. / Product development is necessary to compete in today´s vehicle industry. During the design process the largest possibility to affect the end product to the better exists. One way to achieve product development is to apply new technology. Through application of terrestrial laser scanning digitalized road models can be achieved and be used in simulations. In these simulations, vehicles can virtually do a trial run and thereby shorten the dimensionprocess. Laser scanning of hilly terrain is complex and therefore groundwork of hilly roadways in simulations is missing.  This study refers to present different types of laser scanning methods and expand the groundwork for virtual simulations in the dimensionprocess of dumpers. The vision is to create virtual roadways which can be used in simulation models. Three main techniques of laser scanning are presented in the theory chapter. Further on terrestrial laser scanning has been used on Volvos test track in Målajord and with this scanning data as groundwork a road model, which can be used in vehicle simulations, has been created in Matlab. The road model is well representing the real roadway, which indicates that terrestrial laser scanning is a well working method for this purpose.
9

Utvärdering av digitala terrängmodeller framtagna med flygburen laserskanning och UAS-fotogrammetri / Evaluation of digital terrain models developed with airborne laser scanning and UAS photogrammetry

Lundmark, Johan, Grönlund Häggström, Lukas January 2018 (has links)
Over the last years there has been a rapid development in the UAS-technology (Unmanned Aircraft Systems) and today there are several UAS systems on the market. The fast development has led to differences in both price and capability of taking high-quality images between the systems. The purpose of this study was firstly to investigate how two UAS systems differ in the uncertainty of measurement while making digital terrain models, secondly, to investigate how different UAS systems cope with the laws and requirements that exist for producing digital terrain models for detail projection, SIS-TS 21144:2016 Table 6 level 1-3. A comparative study on two software’s creation of point clouds from picture data was also conducted. In this study, three digital models were made from one specific area. They were created with two different UAS-systems and laser scanning from an airplane. The models were compared and analysed using the RUFRIS method. The UASsystems used were a fixed wings Smartplanes S1C and a rotary wings Dji Phantom 4 PRO. The Smartplanes flew 174 m above the ground and the Dji Phantom 4 flew 80 m above the ground. The results from the study show that laser scanning from the airplane created the model with the lowest measurement uncertainty and met all the requirements for each separate type (asphalt, natural soil, grass and gravel) for detail projection according to SIS.TS 201144:2016 table 6 level 1-3. Additionally, the results show that the terrain model produced by the Dji Phantom 4 only met the requirements for asphalt where the mean deviation was 0,001 m. The results produced with “Smartplanes” met the requirements for asphalt and gravel where the mean deviations were -0,007 m and 0,017 m. The softwares PhotoScan and UASMaster were compared while creating point clouds from pictures taken by the Smartplanes. The results show that PhotoScan had the lowest uncertainty for asphalt, grass and gravel surfaces while UASMaster produced lower uncertainty for natural soil. The results indicate that airborne laser scanning should be the preferred method for collection of topographic data since it created lower measurement uncertainties than the other methods in this study. It is also possible to create digital terrain models with UAS for detail projection for asphalt and gravel surface in accordance with 21144:2016. Finally, it was concluded that the used software programs are showing differences in creating point clouds. / De senaste åren har tekniken för Unmanned Aircraft System (UAS) utvecklats snabbt och idag finns flera system på marknaden. Ett resultat av den snabba utvecklingen är att de olika systemen skiljer sig åt, dels i pris men även i kapacitet. Syftet med studien var att undersöka hur olika UAS-system skiljer sig åt i mätosäkerhet vid framställning av digitala terrängmodeller, men även hur olika UAS-system står sig mot det regelverk som finns för framställning av digitala terrängmodeller vid detaljprojektering enligt SIS-TS 21144:2016 Tabell 6 klass 1-3. Ytterligare ett syfte med studien var att undersöka hur olika programvaror skiljer sig åt vid framställning av punktmoln från bilddata. I studien kontrollerades och jämfördes tre digitala terrängmodeller genererade över samma område med två olika UAS-system samt laserskanning från ett flygplan. Terrängmodellerna jämfördes mot kontrollprofiler framställda med RUFRIS-metoden. De olika UAS-systemen var en dyrare variant, Smartplanes S1C (fastavingar), och en billigare variant, Dji Phantom 4 PRO (roterande vingar). De tillämpade flyghöjderna för flygningarna var 174 m för Smartplanes och 80 m för Dji Phantom. Resultatet från studien visar att laserskanning från flygplanet uppnådde lägst mätosäkerhet och klarade samtliga krav för varje separat marktyp för detaljprojektering enligt SIS-TS 201144:2016 Tabell 6 klass 1-3. Marktyper som undersöktes var: asfalt, naturmark, gräs och grus. Vidare klarade terrängmodellen producerad med Dji Phantom endast kravet för asfaltsytor, där medelavvikelsen fastställdes till 0,001 m. Terrängmodellen producerad med Smartplanes klarade endast kraven för marktyperna asfalt och grus där medelavvikelsen fastställdes till -0,007 m respektive 0,017 m. Som en del i studien jämfördes programvarorna PhotoScan och UASMaster för framställning av punktmoln för bilder insamlade med Smartplanes S1C. Resultatet visar att PhotoScan uppnådde lägst mätosäkerhet för asfalt, gräs och grus medan UASMaster uppnådde lägst mätosäkerhet för naturmark. Studien visar att flygburen laserskanning borde vara en fortsatt föredragen metod för insamling av topografisk data då metoden resulterade i lägst mätosäkerheter i denna studie. Vidare visar studien att det är möjligt att framställa digitala terrängmodeller med UAS för detaljprojektering enligt SISTS 21144:2016 för asfalt- och grusytor. Dessutom konstateras att olika bearbetningsprogram skiljer sig vid framställning av punktmoln.
10

Mätosäkerhet vid digital terrängmodellering med handhållen laserskanner : Undersökning av den handhållna laserskannern ZEB-REVO

Gustafsson, Amanda, Wängborg, Olov January 2018 (has links)
En digital terrängmodell (DTM) är en representation av enbart själva markytan. Det finns flera metoder för att framställa DTM:er, där laserskanning har blivit en alltmer vanlig metod. Inom laserskanning är flygburen laserskanning (FLS) en flitigt använd metod, då metoden har fördelen av att kunna täcka stora områden på kort tid. Det finns dock nackdelar med FLS då datainsamlingen kan bli bristfällig i t.ex. skogsområden, där laserstrålar inte kan tränga igenom tät vegetation. Här kan handhållen laserskanning (HLS) vara ett bra alternativ då HLS går snabbt och inte behöver samma omfattande planering. Tidigare studier visar att HLS har många fördelar, men som dock inte kan hålla samma låga osäkerhet som terrester laserskanning (TLS). Det saknas däremot studier om hur HLS ställer sig mot mätningar med FLS. Syftet med studien är därför att utvärdera möjligheten att använda och tillämpa mätningar med HLS för framställning av DTM i skogsterräng gentemot FLS. Detta görs genom att jämföra respektive DTM:s lägesosäkerhet. I studien användes instrumentet ZEB-REVO för insamlingen av data för metoden HLS. Medan för FLS användes laserdata från Lantmäteriet. Från insamlad laserdata skapades därefter DTM:er. Dessa jämfördes mot ett antal kontrollprofiler som mättes in med totalstation. För respektive metod, HLS och FLS, beräknades medelvärde för höjdavvikelserna mot kontrollprofilerna där även standardavvikelse beräknades. Resultatet visar att DTM:en skapad av data från FLS beräknades ha en höjdavvikelse för hela området på 0,055 m som medelvärde gentemot inmätta kontrollprofiler. Standardavvikelsen för denna höjdavvikelse beräknades till 0,046 m för FLS. För DTM:en med data från HLS beräknades en höjdavvikelse på 0,043 m i medelvärde som bäst, där standardavvikelse beräknades till 0,034 m. Studien visar att metoderna HLS och FLS gav likvärdiga resultat gentemot de inmätta kontrollprofilerna, dock gav HLS generellt mindre standardavvikelse i jämförelse mot FLS. Vidare ansågs ZEB-REVO och dess tillhörande databearbetningsprogram GeoSLAM vara väldigt användarvänligt, där själva skanningen med instrumentet tog endast 10 minuter för studiens område på ca 2000 m2. Utifrån studiens resultat drogs slutsatsen att mätningar med HLS kan ge en likvärdig DTM, sett till osäkerheten, som FLS-mätningar. HLS kan därmed vara en kompletterande metod men att FLS är en fortsatt effektiv metod. / A digital terrain model (DTM) represent exclusively the earth surface. There are several methods which can be utilized to create DTMs, where laser scanning have become a common used method. Airborne laser scanning (ALS) is often used since the method can cover a large area in a relatively short time. However a disadvantage with ALS is that the data collection, for a wooded area, can be inadequate due to penetration difficulties for some laser beams. For that reason a handheld laser scanner (HLS) can be an alternative since measurements can be done fast and does not need the same extensive planning. Earlier studies mention HLS to have several advantages but can still not yet be compared with terrestrial laser scanning (TLS) concerning the measurements uncertainty. There are, however, no studies that investigates how measurements with HLS stands against FLS. The purpose with the study is to evaluate the ability to use measurements from HLS to create a DTM for a wooded area in comparison with ALS. This is done by comparing the different uncertainties for each DTM. In the study the acquisition of HLS laser data was collected with the instrument ZEB-REVO and the ALS laser data was received from Lantmäteriet (cadastral mapping and surveying authority in Sweden). After the data acquisition a DTM were created from each data set (method). The DTMs were then compared to control profiles, which have been measured with total station. From the comparison with the control profiles average height deviation and standard deviation were calculated for each DTM. The result shows that the DTM created from ALS data received an average height deviation of 0,055 m for the whole area with a standard deviation of 0,046 m. Corresponding result for the DTM created from HLS data were calculated, at best, to 0,043 m in average height deviation and 0,034 m in standard deviation. The study shows that the methods HLS and ALS gave equivalent result regarding the comparison with the control profiles, however HLS gave a generally lower value for standard deviation. Furthermore ZEB-REVO with its processing program GeoSLAM was considered to be very easy and user friendly. The area (approx. 2000 m2) for the study was scanned within only 10 min. The conclusion which were drawn from the obtained result was that measurements with HLS can generate an equivalent DTM, concerning the uncertainty, as measurements with FLS. Thereby HLS can be a complementing method but still FLS is seen as an effective method.

Page generated in 0.1123 seconds