Spelling suggestions: "subject:"deiter"" "subject:"breiter""
11 |
Comparison of the Leiter International Performance Scale-Revised and the Stanford-Binet Intelligence Scales, 5th Edition in Children with Autism Spectrum DisordersGrondhuis, Sabrina Nicole 13 September 2010 (has links)
No description available.
|
12 |
Tradução, adaptação, fidedignidade e evidências de validade da bateria de visualização e raciocínio da Leiter International Performance Scale-Revised / Translation, adaptation, reliability and validity evidences of the visualization and reasoning battery of the Leiter International Performance Scale RevisedMecca, Tatiana Pontrelli 10 December 2010 (has links)
Made available in DSpace on 2016-03-15T19:39:37Z (GMT). No. of bitstreams: 1
Tatiana Pontrelli Mecca.pdf: 1842127 bytes, checksum: fcb8dffc9eefa930eaf75dc92c2dc1c6 (MD5)
Previous issue date: 2010-12-10 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Traditional tests that assess intelligence require skills and
ways of responding that are difficult for individuals with specific clinical conditions such as developmental disorders. Thus, it is necessary to provide tools that enable this evaluation. An internationally used test for evaluating nonverbal intelligence in developmental disorders is the Leiter-R, applied from ages 2 to 20. Three performance measures are provided: Fluid Reasoning, Estimated IQ and Total IQ, by means of subtests of the Visualization and Raciocínio Battery. The objective of this study was to perform the translation, adaptation and to check psychometric parameters of the Visualization and Reasoning Battery of the Leiter-R in pre-school children. The translation and adaptation were performed according to assumptions presented in the guidelines of the International Test Commission by following these steps: translation, examination, adaptation and review of the final version. Participants were 254 children between ages 3 and 6, students of 1st to 3rd Stage of Childhood Education from two public schools in the city of São Paulo. Results of variance analysis showed significant effect of age and grade in performance in all Leiter-R subtests, except Sequential Order. Differences in performance due to the time of schooling were found in the Repeated Patterns subtest in children at age 4 of the 1st Stage and in the Figure-Ground and Form Completion subtests in children at age 5 of the 2nd Stage. ANOVA revealed differences of gender for age 6 in the Paper Folding subtest, with better performance in the feminine group. Patterns of convergence were verified through significant and positive correlations between scores in the Leiter-R with the Columbia Mental Maturity Scale and Raven s Coloured Progressive Matrices. Correlations between test and retest were positive and significant for most subtests. The Spearman-Brown coefficients were around 0.84 and Cronbach's Alpha for age and grade showed values around 0.77 indicating good accuracy of subtests. Thus, the results suggest good adequacy of psychometric parameters of the Leiter-R, fulfilling basic requirements that attest to the quality of the tool. / Testes tradicionais que avaliam inteligência exigem habilidades e formas de responder que são difíceis para sujeitos com condições clínicas específicas como os distúrbios do desenvolvimento. Assim, é necessário disponibilizar instrumentos que possibilitem essa avaliação. Um teste utilizado internacionalmente para avaliação de inteligência não-verbal nos distúrbios do desenvolvimento é a Leiter-R, aplicada dos 2 aos 20 anos. São fornecidas três medidas de desempenho: Raciocínio Fluido, QI Estimado e QI Total, por meio dos subtestes da Bateria de Visualização e Raciocínio. O objetivo deste estudo foi realizar a tradução, adaptação e verificar parâmetros psicométricos da Bateria de Visualização e Raciocínio da Leiter-R em pré-escolares. A tradução e adaptação foram realizadas de acordo com pressupostos apresentados nas diretrizes da International Test Commission seguindo as seguintes etapas: tradução, julgamento, adaptação e revisão da versão final. Participaram 254 crianças entre 3 e 6 anos, alunos de 1º a 3º Estágio do Ensino Infantil de duas escolas públicas da cidade de São Paulo. Resultados de análise de variância mostraram efeito da idade e série no desempenho em todos os subtestes da Leiter-R, exceto para o subteste de Sequencias. Diferenças no desempenho devido ao tempo de escolarização foram encontradas no subteste Padrões Repetidos em crianças de 4 anos do 1º Estágio e nos subtestes Figura-Fundo e Formas Completas em crianças de 5 anos no 2º Estágio. ANOVA revelou diferença de gênero para a idade de 6 anos no subteste Dobra de Papel com melhor desempenho no grupo feminino. Padrões de convergência foram verificados através de correlações positivas e significativas entre os escores na Leiter-R com a Escala de Maturidade Mental Columbia e Matrizes Progressivas Coloridas de Raven. Correlações entre teste e reteste foram positivas e significativas para a maioria dos subtestes. Os coeficientes de Spearman-Brown ficaram em torno de 0,84 e Alfa de Cronbach por idade e série, mostraram valores em torno de 0,77 indicando boa precisão dos subtestes. Desta forma, os resultados sugerem boa adequação dos parâmetros psicométricos da Leiter-R, preenchendo requisitos básicos que atestam a qualidade do instrumento.
|
13 |
Andreev-Streuung, Josephson-Bloch-Oszillationen und Zener-Tunneln in Heterokontakten aus Normal- und Supraleitern / Andreev scattering, Josephson-Bloch oscillations, and Zener tunneling in heterojunctions of normal conductors and superconductorsJacobs, Arne January 2003 (has links) (PDF)
Die vorliegende Arbeit beleuchtet verschiedene Aspekte des Ladungstransports in Heterokontakten aus Normal- (N) und Supraleitern (S) im Rahmen des Bogoliubov-de Gennes-Formalismus. Dabei ist der bestimmende Prozeß die Andreev-Streuung: die Streuung von Elektronen in Löcher, bzw. umgekehrt, an räumlichen Variationen des supraleitenden Paarpotentials unter Erzeugung, bzw. Vernichtung, eines Cooperpaares und damit der Induktion eines Suprastroms. Befindet sich ein Supraleiter zwischen zwei normalleitenden Bereichen, so wandelt sich der an der einen NS-Phasengrenze durch Andreev-Streuung induzierte Suprastrom an der anderen NS-Phasengrenze wieder in einen durch Quasiteilchen getragenen Strom um. Diese Umwandlung erfolgt durch den Einfall eines Quasiteilchens, dessen Charakter dem des auf der gegenüberliegenden Seite des Supraleiters einfallenden Quasiteilchens entgegengerichtet ist, wie anhand von Wellenpaket-Rechnungen explizit gezeigt wird. Ersetzt man den Supraleiter durch einen mesoskopischen SNS-Kontakt, ist die Vielteilchen-Konfiguration in der mittleren N-Schicht phasenkohärent und daher verschieden von den unkorrelierten Quasiteilchen-Anregungen, die die verschobene Fermi-Kugel in den normalleitenden Zuleitungen bilden. Die Josephson-Ströme, die durch die Quasiteilchen in der mittleren N-Schicht getragen werden, werden unter zwei verschiedenen Modellannahmen berechnet: Im einen Fall werden nur Streuzustände als Startzustände betrachtet, im anderen, bei gleichzeitiger Berücksichtigung eines normalstreuenden Potentials, nur gebundene Zustände. Der SNS-Kontakt wird durch eine supraleitend/halbleitende Heterostruktur modelliert, deren Parameter-Werte sich an den Experimenten der Gruppe von Herbert Kroemer in Santa Barbara orientieren. Wenn die supraleitenden Bereiche ohne normalleitende Zuleitungen direkt mit einem Reservoir von Cooperpaaren verbunden sind, fallen nur Quasiteilchen in Streuzuständen aus den supraleitenden Bänken auf die NS-Phasengrenzen des Kontaktes ein. Mit den Normalleiter-Wellenfunktionen, die sich bei Anlegen einer Spannung V aus diesen Startzuständen entwickeln, wird die Josephson-Wechselstromdichte in der Mitte der N-Schicht bei der Temperatur T = 2,2 K berechnet. Die Stromdichte weist spannungsabhängige Oszillationen in der Zeit auf, deren Periode das Inverse der Josephson-Frequenz ist. Alle Stromdichten zeigen bei kleinen Spannungen einen steilen Anstieg ihres Betrages, der durch Quasiteilchen zustandekommt, die durch das elektrische Feld aus dem Kondensat kommend in den Paarpotentialtopf hineingezogen werden und dort bei kleinen Spannungen eine große Zahl von Andreev-Streuungen erfahren, wobei sie bei jedem Elektron-Loch-Zyklus die Ladung 2e durch die N-Schicht transportieren. Im zweiten betrachteten Fall wird unter Berücksichtigung von Normalstreuung der Gesamtzustand des Systems zu jedem Zeitpunkt durch eine Superposition von gebundenen Zuständen ausgedrückt. Die Energie dieser gebundenen Zustände ist abhängig von der Phasendifferenz Phi zwischen den supraleitenden Schichten. Für Werte der Phasendifferenz von ganzzahligen Vielfachen von Pi sind Zustände entgegengerichteter Impulse paarweise entartet. Das normalstreuende Potential mischt diese Zustände, hebt ihre Entartung auf und führt zu Energielücken: Es bilden sich Energiebänder im Phi-Raum, die formal den Bloch-Bändern von Kristallen im Wellenzahlraum entsprechen. Wird eine äußere Spannung angelegt, so ändert sich die Phasendifferenz gemäß der Josephson-Gleichung mit der Zeit und die Quasiteilchen oszillieren in ihren jeweiligen Phi-Bloch-Bändern: Diese Josephson-Bloch-Oszillationen ergeben den "normalen" Josephson-Wechselstrom, der zwischen positiven und negativen Werten schwingt und im zeitlichen Mittel Null ist. Zusätzlich können die Quasiteilchen durch Zener-Tunneln --- wie der analoge Prozeß in der Halbleiterphysik genannt wird --- in höhere Bänder übergehen. Während sich die Richtung der Josephson-Stromdichte zu den Zeiten minimaler Energielücke umkehrt, hat die Zener-Tunnel-Stromdichte nach einem Tunnel-Prozeß das gleiche Vorzeichen, das die Josephson-Stromdichte vor dem Tunnel-Prozeß hatte. Wenn die angelegte Spannung hinreichend groß ist und genügend Quasiteilchen in das höhere Band tunneln, überkompensiert die Zener-Tunnel-Stromdichte in der Halbperiode nach dem Tunnel-Prozeß die Josephson-Stromdichte, und die Gesamtstromdichte schwingt wieder in dieselbe Richtung wie vor dem Zener-Tunneln. Somit hat sich gewissermaßen die Periode halbiert: Die Gesamtstromdichte schwingt mit der doppelten Josephson-Frequenz. Allen untersuchten Aspekten des Ladungstransports durch Heterokontakte aus Normal- und Supraleitern ist eines gemein: Der für ihr Verständnis fundamentale Prozeß ist die Andreev-Streuung. / The present work covers various aspects of charge transport in heterojunctions consisting of normal conductors (N) and superconductors (S) within the framework of the Bogoliubov-de Gennes-Formalism. The determining process is Andreev scattering: the scattering of electrons into holes, or vice versa, by spatial variations of the superconducting pair potential. This scattering creates or destroys Cooper pairs, thereby inducing a supercurrent. If there is a superconductor between two normal conducting regions, the supercurrent induced by Andreev scattering in one NS interface changes into a quasiparticle current in the other NS interface. This conversion results from the incidence of a quasiparticle having a character opposite to that of the quasiparticle impinging on the opposite side of the superconductor, as is shown explicitly on the basis of wave packet calculations. If the superconductor is replaced by a mesoscopic SNS junction, the many-body configuration in the central N layer is a phase-coherent one and thus different from the uncorrelated quasiparticle excitations forming the shifted Fermi sphere in the normal current leads. The Josephson currents, that are carried by the quasiparticles in the central N layer, are calculated using two different model assumptions: In one case, only scattering states are regarded as initial states, in the other case, while simultaneously taking into account a normal scattering potential, only bound states. The SNS junction is modelled by a superconducting/semiconducting heterostructure, the parameter values of which are geared to the experiments of the group of Herbert Kroemer in Santa Barbara. If the superconducting region is directly connected to a reservoir of Cooper pairs without normal current leads, only quasiparticles in scattering states are incident from the superconducting banks onto the NS interfaces of the junction. The alternating Josephson current is calculated in the center of the N layer at temperature T = 2.2 K, using the N layer wavefunctions that evolve from the initial states when a voltage V is switched on. The current density shows voltage-dependent current oscillations in time, their period is the inverse of the Josephson frequency. All current densities show a steep increase of their magnitude with small voltages, brought about by quasiparticles originating from the condensate and being pulled by the electric field into the pair potential well, where they suffer a great number of Andreev reflections at small voltages while carrying a charge of 2e through the N layer with every electron-hole-cycle. In the second case the overall state of the system, taking into account normal scattering, is expressed at every instant of time as a superposition of bound states. The energy of these bound states depends on the phase difference Phi between the superconducting layers. For phase differences of integer multiples of Pi, states with opposite direction of momentum are pairwise degenerate. The normal scattering potential mixes these states, removes their degenaracy and leads to energy gaps: energy bands form in Phi-space, formally corresponding to the Bloch bands of crystals in wavenumber space. If an external voltage is switched on, the phase difference changes in time according to the Josephson equation, and the quasiparticles oscillate in their respective Phi-Bloch bands: These Josephson-Bloch oscillations yield the "normal" alternating Josephson current which swings between positive and negative values and equals zero in its time average. Additionally, quasiparticles can make transitions into higher bands via Zener tunneling --- as the analogous process in semiconductor physics is called. While the direction of the Josephson current density changes at the times when the energy gap is minimal, the Zener-tunneling current density possesses the same sign after a tunneling process as the Josephson current density had before the tunneling process. When the applied voltage is so high that many quasiparticles tunnel into the next higher band, and the Zener-tunneling current density overcompensates the Josephson current density in the half-period after the tunneling process, the overall current density swings back again into the same direction as before the Zener tunneling. Thus the period has effectively bisected: The overall current density oscillates with twice the Josephson frequency. All analysed aspects of charge transport through heterojunctions of normal conductors and superconductors have one thing in common: the fundamental process for their understanding is Andreev scattering.
|
14 |
Nietzsche's Causally Efficacious Account of ConsciousnessWissmueller, Bradley 07 May 2011 (has links)
Many interpreters read Nietzsche as an epiphenomenalist. This means that, contrary to everyday “felt” experience, consciousness has no causal influence on our actions. In the first half of this paper I show that an epiphenomenalist interpretation proposed by Brian Leiter is unsupported by Nietzsche’s texts. Further, contemporary research does not conclusively support epiphenomenalism, as Leiter claims. In the second half of the paper I present the novel, causally efficacious view of consciousness that is supported by Nietzsche’s texts. This view of consciousness does not present consciousness as a self-caused faculty that is in some way separate from the rest of our mind and body, but rather views consciousness as a non-essential property of certain mental states. I trace the development of this idea through two key passages and show that, in the danger it presents as well as in the promise, consciousness is clearly causally efficacious.
|
15 |
Consciousness, Self-Control, and Free Will in NietzscheRussell, Bryan T 14 December 2011 (has links)
Brian Leiter is one of the few Nietzsche interpreters who argue that Nietzsche rejects all forms of free will. Leiter argues that Nietzsche is an incompatibilist and rejects libertarian free will. He further argues that since Nietzsche is an epiphenomenalist about conscious willing, his philosophy of action cannot support any conception of free will. Leiter also offers deflationary readings of those passages where Nietzsche seemingly ascribes free will to historical figures or types. In this paper I argue against all of these conclusions. In the first section I show that, on the most charitable interpretation, Nietzsche is not an epiphenomenalist. In the second section I trace Nietzsche’s alleged incompatibilism through three of his works and offer reasons to be skeptical of the claim that Nietzsche was a committed incompatibilist. Finally, I argue that Nietzsche is not being sarcastic or unacceptably revisionary when he makes positive ascriptions of free will.
|
16 |
Führen und Leiten in der öffentlichen Jugendhilfe eine Studie zur Führungs- und Leitungssituation rheinland-pfälzischer Jugendamtsleiterinnen und JugendamtsleiterJung, Heike January 2006 (has links)
Zugl.: Mainz, Univ., Diss., 2006
|
17 |
Langzeitverhalten elektrotechnischer Verbindungen unter Berücksichtigung des Kriechens der LeitermaterialienSchoft, Stephan January 2007 (has links)
Zugl.: München, Techn. Univ., Diss., 2007
|
18 |
Microwave investigation of low-dimensional organic conductorsPetukhov, Konstantin, January 2003 (has links) (PDF)
Stuttgart, Univ., Diss., 2003.
|
19 |
Hochfrequenzuntersuchungen an niedrigdimensionalen SupraleiternThoms, Jürgen, January 2004 (has links)
Stuttgart, Univ., Diss., 2004.
|
20 |
Einfluß von Gitterfluktuationen und Coulomb-Wechselwirkung auf die linear optischen Eigenschaften von Polyacetylen /Starke, Birgit. Unknown Date (has links)
Humboldt-Universiẗat, Diss., 1997--Berlin.
|
Page generated in 0.1946 seconds