Spelling suggestions: "subject:"deiter"" "subject:"breiter""
31 |
Diffusive and ballistic transport channels in epitaxial graphene nanoribbonsAprojanz, Johannes 27 August 2019 (has links)
Graphene nanoribbons (GNRs) are considered as major building blocks of future carbon-based electronics, in which the termination of the edges essentially defines the electronic properties. Theoretical predictions, such as tunable band gaps in armchair orientated GNRs, and the existence of topologically protected metallic states located at zigzag edges, make them a potential candidate for transistor applications as well as a new class of fully coherent devices. In this context, the fabrication of high-quality GNRs with precise edge geometries is of great interest. Atomistic details and the interaction with its support
crucially influence and determine the charge propagation within such graphene nanostructures. Hence, the understanding of transport mechanisms on the nanoscale is indispensable in order to integrate GNRs in future nanoelectronics.
This thesis presents a detailed study of the sublimation-assisted growth of different types of self-assembled GNRs on SiC crystals using scanning probe, electron microscopy, and electron diffraction experiments. First, natural SiC steps will be shown to trigger the formation of µm-long epitaxial monolayer
GNRs (ML-GNRs), which laterally expand on the flat SiC(0001) surface. These ribbons can be transformed into bilayer GNRs (BL-GNRs) by annealing in air. During this process, oxygen-intercalation takes place, forming an oxide layer below the BL-GNRs. Charge transfer into the oxide layer results in strong p-type doping. Based on local multi-probe experiments, ML-GNRs and BL-GNRs revealed 1D diffusive transport characteristics inherent in the comparably high charge carrier densities in both types of ribbon. Moreover, temperature activated interlayer hopping was identified as an effective transport mechanism in BL-GNRs.
Graphene nanoribbons grown on pre-processed SiC sidewalls exhibited superior crystalline and electronic quality on wafer-scales. Sidewalls aligned parallel to the [11-20] SiC direction are composed of a periodic array of mini-terraces hosting several approximately (3+-1) nm wide armchair terminated GNRs (ac-GNRs) at their step edges. By using a combined nanoprobe and conductive atomic force microscopy study, ac-GNRs revealed semi-conducting transport characteristics with band gaps of ~300 meV.
Such debunching effects can be suppressed in sidewalls along the [1-100] SiC direction. Here, the graphene completely overgrows the sidewall resulting in ~40 nm wide freestanding zigzag GNRs (zz-GNRs). A robust ballistic edge channel was found to be the hallmark of zz-GNRs, which persists on µm-scales at room temperature suggesting the existence of a perfectly conducting channel. However, the roughness of the SiC and the mesa sidewalls limit the charge propagation in this edge mode due to strong short-range interactions.
Moreover, ballistic transport was independently proven by utilizing non-invasive and invasive voltage probes. Tuning of the invasiveness was achieved using cleaning procedures of the tips, which lead to a subsequent decrease of contact resistance due to the removal of oxide from the tip surface. The measured resistance of the ballistic conductor was shown to be directly dependent on the invasiveness of the tips, pointing out the importance of the interplay between the probes and the GNR.
Finally, spatially-resolved nanoprobe experiments with ultra-small probe spacings revealed several quantized conduction plateaus across zz-GNRs. These plateaus were attributed to edge and bulk transport channels, respectively. Based on tight-binding calculations, the occurrence of spatially-segregated ballistic channels was explained by transversal electric fields originating from asymmetric edge terminations on both sides of the GNR. These findings highlight that edge morphology is an essential parameter in order to understand electronic transport in GNRs. / Nanometerbreite Streifen aus Graphen, sogenannte Graphen-Nanoribbons (GNRs), gelten als wichtiges Bauelement in zukünftigen, kohlenstoffbasierten Elektroniken. Dabei sind die elektronischen Eigenschaften der GNRs wesentlich durch die Geometrie ihrer Kanten bestimmt. Basierend auf theoretischen Modellen, werden skalierbare Bandlücken in armchair-GNRs, sowie lokalisierte, metallische Kantenzustände in zigzag-GNRs vorhergesagt. Diese Eigenschaften könnten für Transistoranwendugen oder sogar für die Realisierung von Bauelementen, die auf kohärentem Ladungstransport basieren, genutzt werden. Dementsprechend ist die Herstellung hochwertiger GNRs mit präzisen Kantengeometrien sowie das Verständnis der zugrundeliegenden Transportmechanismen von großem Interesse.
Die vorliegende Arbeit umfasst eine detaillierte Charakterisierung der strukturellen Eigenschaften verschiedener GNR-Typen, die mittels Sublimationsepitaxie auf SiC Kristallen hergestellt wurden. Es wird gezeigt, dass sich μm-lange Monolagen-GNRs (ML-GNRs) an natürlichen SiC Stufenkanten ausbilden, die durch Tempern an Luft zu Bilagen-GNRs (BL-GNRs) transformiert werden können. Während des Temperns findet die Interkalation von Sauerstoff statt, sodass sich unterhalb des BL-GNRs eine Oxidschicht bildet. Der Ladungstransfer in diese Oxidschicht führt zu einer starken p-Dotierung. Lokale Transportmessungen mittels eines 4-Spitzen STM/SEM zeigen, dass sowohl ML-GNRs als auch BL-GNRs 1D diffuse Leiter sind, deren Transporteigenschaften durch die hohen Ladungsträgerdichten dominiert werden. Darüber hinaus wird gezeigt, dass das thermisch aktivierte Tunneln zwischen Graphenlagen ein effektiver Transportmechanismus in BL-GNRs ist.
Graphen-Nanoribbons, die durch präferenzielles Wachstum auf SiC-Seitenwänden hergestellt wurden, zeichnen sich durch herausragende strukturelle sowie elektronische Eigenschaften aus. Seitenwände parallel zur [11-20] Richtung wiesen hierbei eine periodische Struktur von Mini-Terrassen auf, an deren Stufen sich mehrere (3 ± 1) nm breite armchair-GNRs (ac-GNRs) ausbilden. Durch die Kombination von 4-Spitzen STM/SEM und Rasterkraftmikroskopie mit leitfähigen Spitzen wurde festgestellt, dass ac-GNRs halbleitende Eigenschaften aufweisen. Die Größe der ermittelten Bandlücken beträgt ∼ 300 meV.
Das Zerfallen in Mini-Terrassen kann bei Seitenwänden entlang der [1-100] SiC Richtung unterdrückt werden. Hierbei wird die Seitenwand vollständig vom Graphen überwachsen, sodass sich ∼ 40 nm breite zigzag-GNRs (zz-GNRs) ausbilden. Diese zeichnen sich durch einen robusten, ballistischen (Kanten-) Transportkanal aus, der bei Raumtemperatur auf μm-Skalen nachweißbar ist. Lediglich Rauigkeiten
des Substrats sowie der Seitenwände, die als starke Streuzentren dienen, limitieren die Ausbreitung der Ladungsträger in diesem Kantenzustand.
Der ballistische Transport von Ladungsträgern in zz-GNRs wurde unabhängig, mit Hilfe von nicht-invasiven und invasiven Spannungskontakten (STM-Spitzen) nachgewiesen. Die Invasivität der Kontakte wurde durch spezielle Reinigungsverfahren der Spitzen verändert, die zu geringeren Kontaktwiderständen führten. Hierbei wird gezeigt, dass der gemessene Widerstand des ballistischen Leiters
direkt von der Invasivität der Spitzen abhängt. Dies deutet darauf hin, dass die Interaktion zwischen Messspitze und GNR bezüglich der Transporteigenschaften von großer Bedeutung ist.
Abschließend werden mittels ortsaufgelöster Transportmessungen mit ultrakleinen Spitzenabständen mehrere, quantisierte Leitungskanäle detektiert, die sich räumlich über die Breite der zz-GNRs verteilen. Diese Kanäle können jeweils Kanten- und Volumen-Zuständen zugeordnet werden. Gestützt durch tight-binding-Berechnungen werden die quantisierten Transportkanäle durch transversale elektrische Felder erklärt, die durch asymmetrische Bindungsverhältnisse der Kanten erzeugt werden. Diese Ergebnisse unterstreichen, dass die Kantenmorphologie ein wesentlicher Parameter ist, um den elektronischen Transport in GNRs zu verstehen.
|
32 |
Study of epitaxial cuprate and pnictide thin films grown on textured templatesShipulin, Ilya 05 September 2023 (has links)
The discovery of high temperature superconductors led to a tremendous boom in the development of new applications based on this material. Due to the significant anisotropy and the dependence of the critical current density on the misorientation of grains, the so-called coated conductor technology was developed for these materials to realize long wires. These conductors are applied at liquid nitrogen temperature for cables or motors as well as in liquid helium for high-field applications, such as in magnets for particle accelerators or future fusion reactors. One of the main aspects of using superconducting materials in the above-mentioned areas is their high current-carrying capacity, which decreases for a number of reasons. Therefore, studying the superconducting current flow in such conductors remains a priority to understand the main mechanisms and to increase the critical current density in a wide range of temperatures and magnetic fields.
The major goal of this thesis was to study the correlation between the local microstructure and the superconducting properties for Ag-doped YBa2Cu3O7−δ (YBCO), (Nd1/3Eu1/3Gd1/3)Ba2Cu3O7−δ (NEG) and the iron-based superconductor Ba(Fe1−xNix)2As2 (Ba122:Ni). Therefore, epitaxial films were grown of these materials by pulsed laser deposition on single crystals and two different commercial coated conductor templates having a different degree of granularity. Experimental techniques such as electron backscattering diffraction (EBSD) and scanning Hall probe microscopy (SHPM) allow to investigate both the local microstructure and local distribution of superconducting current in these films.
Ag-doped YBCO films with different thickness were deposited on single crystalline SrTiO3 substrates as well as on RABiTS and IBAD-MgO-based templates. It is expected, that silver as dopant improves the growth of the films, and has a beneficial influence on the current transport across grain boundaries, which is of considerable interest for metal-based templates due to their granular structure. EBSD studies on the local microstructure revealed only minor changes with silver concentration. Nevertheless, an improvement in transport properties was observed for thicker YBCO:Ag layers on SrTiO3 and thin films on both metal-based templates. SHPM measurements show an improvement of the local current distribution, which is probably due to the improvement of the current transport between the grains.
NEG films were grown with different thicknesses on RABiTS and IBAD-MgO-based templates for the first time. Structural studies revealed an epitaxial growth of all samples on both metal-based templates. Whereas NEG layers on SrTiO3 showed broad superconducting transitions due to film inhomogeneities, a narrow transition at about 89 K was measured for films grown on the metal templates. However, the critical current density is still inferior to YBCO films of similar thickness. This might be improved by further optimization of the growth and oxygen loading conditions.
Finally, the Ba122:Ni films were studied on single crystalline CaF2 substrates and commercial metal-based templates. This material might be interesting for applications due to a low anisotropy, high upper critical fields and critical currents as well as a reduced sensitivity to grain boundaries. Structural studies showed an epitaxial growth on RABiTS templates, whereas no epitaxy was found on IBAD-MgO based tapes. Simultaneously, a broad superconducting transition was observed on the metallic templates, which requires a further optimization of the growth process. Detailed studies of the superconducting and electronic properties for Ba122:Ni films on CaF2 substrates revealed similar properties as for single crystals, which opens the prospects to use such films for different applied and fundamental tasks.
|
33 |
Mesoscopic wave phenomena in electronic and optical ring structures / Mesoskopische Wellenphänomene in elektronischen und optischen RingstrukturenHentschel, Martina 14 November 2001 (has links) (PDF)
Gegenstand dieser Arbeit sind Wellenphänomene in mesoskopischen Ringstrukturen. In Teil I der Arbeit befassen wir uns mit spinabhängigem Transport von Elektronen in effektiv eindimensionalen Ringen in Gegenwart inhomogener Magnetfelder. Wir benutzen die exakten Lösungen der Schrödinger-Gleichung im allgemeinen nicht-adiabatischen Fall in einem Transfer-Matrix-Formalismus und untersuchen Auswirkungen von geometrischen Phasen auf den Magnetwiderstand. Für den Spezialfall eines Magnetfeldes in der Ringebene sagen wir einen interessanten Spin-Flip-Effekt vorher, der die Steuerung der Polarisationsrichtung von Elektronen über einen externen Aharonov-Bohm-Fluß erlaubt. Optische mesoskopische Systeme sind Thema von Teil II dieser Arbeit. Wir betrachten zweidimensionale annulare Strukturen, charakterisiert durch unterschiedliche Brechungsindizes, sowohl im klassischen Bild der geometrischen Optik als auch mit Wellenmethoden auf der Grundlage der Maxwellschen Gleichungen. Insbesondere diskutieren wir erstmals eine Streumatrixbeschreibung optischer Mikroresonatoren und wenden sie auf das dielektrische annulare Billard an. Ein Vergleich der Ergebnisse des Wellen- und Strahlenbildes liefert eine gute Übereinstimmung, jedoch sind im Grenzfall großer Wellenlängen von der Ordnung der Systemabmessungen Korrekturen zum Strahlenbild nötig. Wir zeigen am Beispiel von Fresnel-Gesetzen für gekrümmte Oberflächen erstmals, daß der Goos-Hänchen-Effekt diese Korrekturen quantitativ erfaßt. Ausgehend von der Wellenbeschreibung leiten wir neue analytische Formeln für verallgemeinerte Fresnel-Gesetze für beide möglichen Polarisationsrichtungen ab. Die Anwendung des Strahlenbildes erlaubt eine schlüssige Interpretation eines Experiments mit einer quadrupolaren Glasfaser, außerdem schlagen wir Strahlenkonzepte als Grundlage der Konstruktion von Mikrolasern mit maßgeschneiderten Charakteristika vor. / In this work we investigate wave phenomena in mesoscopic systems using different theoretical approaches. In Part I, we focus on effectively one-dimensional electronic ring structures and address the phenomenon of geometric phases in spin-dependent electronic transport in the presence of non-uniform magnetic fields. In the general non-adiabatic case, exact solutions of the Schrödinger equation are used in a transfer matrix formalism to compute the transmission probability through the ring. In the magneto-conductance we identify clear signatures of interference effects due to geometric phases, for example in rings where the non-uniform field is created by a central micromagnet. For the special case of an in-plane magnetic field we predict an interesting spin-flip effect that allows one to control the spin polarization of electrons by applying an external Aharonov-Bohm flux. Optical mesoscopic systems are the subject of Part II. We consider two-dimensional annular structures characterized by different refractive indices, and apply classical methods from geometric optics as well as wave concepts based on Maxwell's equations. For the first time, an S-matrix approach is successfully employed in the description of resonances in optical microresonators; in particular we propose the dielectric annular billiard as an attractive model system. Comparing ray and wave pictures, we find general agreement, except for large wavelengths of the order of the system size, where corrections to the ray model are necessary. The Goos-Hänchen effect as an extension of the ray picture is shown to quantitatively account for wave modifications of Fresnel's laws due to curved interfaces. We derive novel analytical expressions for the corrected Fresnel formulas for both polarizations of light. Motivated by the successful ray description, we give a conclusive interpretation of a recent filter experiment on a quadrupolar glass fibre, and suggest novel concepts for microresonator-based lasers.
|
34 |
High-field electron spin resonance in low-dimensional spin systemsOzerov, Mykhaylo 14 June 2011 (has links) (PDF)
Due to recent progress in theory and the growing number of physical realizations, low-dimensional quantum magnets continue to receive a considerable amount of attention. They serve as model systems for investigating numerous physical phenomena in spin systems with cooperative ground states, including the field-induced evolution of the ground-state properties and the corresponding rearrangement of their low-energy excitation spectra. This work is devoted to systematic studies of recently synthesized low-dimensional quantum spin systems by means of multi-frequency high-field electron spin resonance (ESR) investigations. In the spin- 1/2 chain compound (C6H9N2)CuCl3 [known as (6MAP)CuCl3] the striking incompatibility with a simple uniform S = 1/2 Heisenberg chain model employed previously is revealed. The observed ESR mode is explained in terms of a recently developed theory, revealing the important role of the alternation and next-nearest-neighbor interactions in this compound. The excitations spectrum in copper pyrimidine dinitrate [PM·Cu(NO3)2(H2O)2]n, an S = 1/2 antiferromagnetic chain material with alternating g-tensor and Dzyaloshinskii-Moriya interaction, is probed in magnetic fields up to 63 T. To study the high field behavior of the field-induced energy gap in this material, a multi-frequency pulsed-field ESR spectrometer is built. Pronounced changes in the frequency-field dependence of the magnetic excitations are observed in the vicinity of the saturation field, B ∼ Bs = 48.5 T. ESR results clearly indicate a transition from the soliton-breather to a spin-polarized state with magnons as elementary excitations. Experimental data are compared with results of density matrix renormalization group calculations; excellent agreement is found. ESR studies of the spin-ladder material (C5H12N)2CuBr4 (known as BPCB) completes the determination of the full spin Hamiltonian of this compound. ESR results provide a direct evidence for a pronounced anisotropy in this compound, that is in contrast to fully isotropic spin-ladder model employed previously for BPCB. Our observations can be of particular importance for describing the rich temperature-field phase diagram of this material. The frequency-field diagram of magnetic excitations in the quasi-two dimensional S = 1/2 compound [Cu(C4H4N2)2(HF2)]PF6 in the AFM-ordered state is studied. The AFM gap is observed directly. Using high-field magnetization and ESR results, parameters of the effective spin-Hamiltonian (exchange interaction, anisotropy and g-factor) are obtained and compared with those estimated from thermodynamic properties of this compound.
|
35 |
High-field electron spin resonance in low-dimensional spin systemsOzerov, Mykhaylo 04 May 2011 (has links)
Due to recent progress in theory and the growing number of physical realizations, low-dimensional quantum magnets continue to receive a considerable amount of attention. They serve as model systems for investigating numerous physical phenomena in spin systems with cooperative ground states, including the field-induced evolution of the ground-state properties and the corresponding rearrangement of their low-energy excitation spectra. This work is devoted to systematic studies of recently synthesized low-dimensional quantum spin systems by means of multi-frequency high-field electron spin resonance (ESR) investigations. In the spin- 1/2 chain compound (C6H9N2)CuCl3 [known as (6MAP)CuCl3] the striking incompatibility with a simple uniform S = 1/2 Heisenberg chain model employed previously is revealed. The observed ESR mode is explained in terms of a recently developed theory, revealing the important role of the alternation and next-nearest-neighbor interactions in this compound. The excitations spectrum in copper pyrimidine dinitrate [PM·Cu(NO3)2(H2O)2]n, an S = 1/2 antiferromagnetic chain material with alternating g-tensor and Dzyaloshinskii-Moriya interaction, is probed in magnetic fields up to 63 T. To study the high field behavior of the field-induced energy gap in this material, a multi-frequency pulsed-field ESR spectrometer is built. Pronounced changes in the frequency-field dependence of the magnetic excitations are observed in the vicinity of the saturation field, B ∼ Bs = 48.5 T. ESR results clearly indicate a transition from the soliton-breather to a spin-polarized state with magnons as elementary excitations. Experimental data are compared with results of density matrix renormalization group calculations; excellent agreement is found. ESR studies of the spin-ladder material (C5H12N)2CuBr4 (known as BPCB) completes the determination of the full spin Hamiltonian of this compound. ESR results provide a direct evidence for a pronounced anisotropy in this compound, that is in contrast to fully isotropic spin-ladder model employed previously for BPCB. Our observations can be of particular importance for describing the rich temperature-field phase diagram of this material. The frequency-field diagram of magnetic excitations in the quasi-two dimensional S = 1/2 compound [Cu(C4H4N2)2(HF2)]PF6 in the AFM-ordered state is studied. The AFM gap is observed directly. Using high-field magnetization and ESR results, parameters of the effective spin-Hamiltonian (exchange interaction, anisotropy and g-factor) are obtained and compared with those estimated from thermodynamic properties of this compound.
|
36 |
Intraband Dynamics in the Optically Excited Wannier-Stark Ladder Spectrum of Semiconductor Superlattices / Intraband Dynamik im optisch angeregten Wannier-Stark-Leiter-Spektrum von Halbleiter-ÜbergitternRosam, Ben 11 June 2005 (has links) (PDF)
In semiconductor superlattices, the carrier band structure can be tailored by the proper choice of their geometry. Therefore, superlattices are a model system for the study of coherent high-field transport phenomena in a periodic potential with applied static electric field. This thesis is structured in two parts. I. Zener Tunneling in Semiconductor Superlattices. In this work,semiconductor superlattices with shallow barriers and narrow band gaps were employed to investigate the Zener breakdown. In these samples, tunneling in the electron Wannier-Stark ladder spectrum is addressed as coupling of the electron states of a single bound below-barrier band to the states of the above-barrier spectrum. The field-dependent evolution of the Wannier-Stark ladder states was traced in the optical interband spectrum. Superlattices with different geometries were employed, to clarify the influence of the particular miniband structure on the Zener tunneling behavior. It was shown that in the presence of Zener tunneling, the Wannier-Stark ladder picture becomes invalid. Tunneling is demonstrated to lead to a field-induced delocalization of Wannier-Stark ladder states. In addition, the coherent polarization lifetime was analyzed as a measure of the tunneling probability. II. Terahertz Emission of Exciton Wave Packets in Semiconductor Superlattices. By means of Terahertz spectroscopy, the coherent intraband dynamics of exciton wave packets in biased superlattices after the selective ultrafast excitation of the Wannier-Stark ladder spectrum was investigated. The dynamics of Bloch oscillations was investigated under broadband excitation. It is demonstrated, that the Bloch oscillation amplitude can be controlled by altering the pump pulse energy. The xperimental results can only be explained in a full exciton picture, incorporating bound 1s exciton states and the associated exciton in-plane continuum. The intraband dipole of single Wannier-Stark ladder excitons was measured by detecting the Terhartz response after excitation of the Wannier-Stark ladder with a spectrally narrow rectangular pump pulse. In addition, experiments revealed a previously unknown mechanism for the generation of Bloch oscillating exciton wave packets. This was demonstrated for an incident pump spectrum which was too narrow to excite a superposition of Wannier-Stark ladder states. The effect is based on the sudden, non-adiabatic, change in the net dc internal field due to creation of electron-hole pairs with permanent dipole moments. The non-adiabatic generation of Bloch oscillations is a highly nonlinear effect mediated by strong exciton-exciton interactions.The central role that play exciton-exciton interactions in the intraband dynamics became especially evident when the Wannier-Stark ladder was selectively excited by two spectrally narrow laser lines. The experiments demonstrated a resonant enhancement of the intraband transition matrix element when 1s exciton wavepackets are excited. / In Halbleiter-Übergittern kann die Bandstruktur von Ladungsträgern durch die geeignete Wahl der Geometrie eingestellt werden. Deshalb sind Halbleiter-Übergitter ein Modellsystem für Untersuchungen des kohärenten Ladungstransportes im periodischen Potential bei hohen, statischen, elektrischen Feldern. Diese Doktorarbeit ist in zwei Teile untergliedert. I. Zener-Tunneln in Halbleiter-Übergittern In dieser Arbeit werden Halbleiter-Übergitter mit flachen Barrieren und schmalen Bandlücken eingesetzt, um den Effekt des Zener-Durchbruchs zu untersuchen. In diesen Strukturen wird das Zener-Tunneln im Elektronen-Spektrum der Wannier-Stark-Leiter adressiert. Dabei handelt es sich um die Kopplung von Elektronen-Zuständen eines einzelnen Minibandes unterhalb der Potentialbarriere des Quantentopfes mit Zuständen oberhalb der Barriere. Die Feldabhängigkeit der Wannier-Stark-Leiter-Zustände wurde im optischen Interband-Spektrum detektiert. Übergitter mit unterschiedlichen Geometrien wurden untersucht, um den Einfluss der spezifischen Miniband-Struktur auf die Charakteristiken des Zener-Tunnelns aufzuklären. Es wurde gezeigt, dass im Regime des Zener-Tunnelns das Wannier-Stark-Leiter-Bild nicht mehr gültig ist. Dabei wird demonstriert, dass Tunneln zu einer feldabhängigen Delokalisierung der Wannier-Stark-Leiter-Zustände führt. Außerdem wird die Kohärenz-Lebensdauer der Polarisation analysiert. Sie bildet die Tunneln-Wahrscheinlichkeit ab. II. Terahertz Emission von Exzitonen-Wellen-Paketen in Halbleiter-Übergittern Mit Hilfe von Terahertz-Spektroskopie wurde die kohärente Intraband-Dynamik von Exzitonen-Wellen-Paketen in vorgespannten Halbleiter-Übergittern nach der selektiven, ultrakurzen Anregung des Wannier-Stark-Leiter-Spektrums untersucht. Die Dynamik von Bloch-Oszillatonen wurde durch spektral breitbandiger Anregung detektiert. Es wird gezeigt, dass die Amplitude von Bloch-Oszillationen durch die Änderung der Energie des Anrege-Pulses beeinflusst werden kann. Die experimentellen Resultate können nur in einem ganzheitlichen Exzitonenbild erklärt werden. Es umfaßt die gebundenen 1s-Exziton-Zustände und das zugehörige Exzitonen-Kontinuum in der Quantentopfschicht. Der Intraband-Dipol einzelner Wannier-Stark-Leiter-Exzitonen wurde durch die Detektion der Terahertz-Antwort auf die Anregung der Wannier-Stark-Leiter mit einem spektral schmalen Anrege-Puls vermessen. Außerdem wird in den Experimenten ein zuvor ungekannten Mechanismus der Anregung von bloch-oszillierenden Wellen-Paketen beobachtet. Dieser Effekt wird für ein eingestrahltes Anrege-Spektrum, welches spektral zu schmal für die Anregung einer Überlagerung von Wannier-Stark-Leiter-Zuständen ist, demonstriert. Der Mechanismus basiert auf die unmittelbare, nicht-adiabatische Änderung des effektiven, internen, statischen Feldes auf Grund der Anregung von Elektron-Loch-Paaren mit permanentem Dipolmoment. Die nicht-adiabatische Anregung von Bloch-Oszillationen ist ein hoch nicht-linearer Effekt, der durch starke Exziton-Exziton Wechselwirkung vermittelt wird. Die zentrale Rolle, die die Exziton-Exziton Wechselwirkung in der Intraband-Dynamik spielt, wurde besonders deutlich bei der selektiven Anregung der Wannier-Stark-Leiter durch zwei spekral schmale Laserlinien. Die Experimente demonstrieren eine resonante Überhöhung des Intraband-Übergangs-Matrix-Elements, wenn 1s-Exziton-Wellen-Pakete angeregt werden.
|
37 |
Intraband Dynamics in the Optically Excited Wannier-Stark Ladder Spectrum of Semiconductor SuperlatticesRosam, Ben 22 April 2005 (has links)
In semiconductor superlattices, the carrier band structure can be tailored by the proper choice of their geometry. Therefore, superlattices are a model system for the study of coherent high-field transport phenomena in a periodic potential with applied static electric field. This thesis is structured in two parts. I. Zener Tunneling in Semiconductor Superlattices. In this work,semiconductor superlattices with shallow barriers and narrow band gaps were employed to investigate the Zener breakdown. In these samples, tunneling in the electron Wannier-Stark ladder spectrum is addressed as coupling of the electron states of a single bound below-barrier band to the states of the above-barrier spectrum. The field-dependent evolution of the Wannier-Stark ladder states was traced in the optical interband spectrum. Superlattices with different geometries were employed, to clarify the influence of the particular miniband structure on the Zener tunneling behavior. It was shown that in the presence of Zener tunneling, the Wannier-Stark ladder picture becomes invalid. Tunneling is demonstrated to lead to a field-induced delocalization of Wannier-Stark ladder states. In addition, the coherent polarization lifetime was analyzed as a measure of the tunneling probability. II. Terahertz Emission of Exciton Wave Packets in Semiconductor Superlattices. By means of Terahertz spectroscopy, the coherent intraband dynamics of exciton wave packets in biased superlattices after the selective ultrafast excitation of the Wannier-Stark ladder spectrum was investigated. The dynamics of Bloch oscillations was investigated under broadband excitation. It is demonstrated, that the Bloch oscillation amplitude can be controlled by altering the pump pulse energy. The xperimental results can only be explained in a full exciton picture, incorporating bound 1s exciton states and the associated exciton in-plane continuum. The intraband dipole of single Wannier-Stark ladder excitons was measured by detecting the Terhartz response after excitation of the Wannier-Stark ladder with a spectrally narrow rectangular pump pulse. In addition, experiments revealed a previously unknown mechanism for the generation of Bloch oscillating exciton wave packets. This was demonstrated for an incident pump spectrum which was too narrow to excite a superposition of Wannier-Stark ladder states. The effect is based on the sudden, non-adiabatic, change in the net dc internal field due to creation of electron-hole pairs with permanent dipole moments. The non-adiabatic generation of Bloch oscillations is a highly nonlinear effect mediated by strong exciton-exciton interactions.The central role that play exciton-exciton interactions in the intraband dynamics became especially evident when the Wannier-Stark ladder was selectively excited by two spectrally narrow laser lines. The experiments demonstrated a resonant enhancement of the intraband transition matrix element when 1s exciton wavepackets are excited. / In Halbleiter-Übergittern kann die Bandstruktur von Ladungsträgern durch die geeignete Wahl der Geometrie eingestellt werden. Deshalb sind Halbleiter-Übergitter ein Modellsystem für Untersuchungen des kohärenten Ladungstransportes im periodischen Potential bei hohen, statischen, elektrischen Feldern. Diese Doktorarbeit ist in zwei Teile untergliedert. I. Zener-Tunneln in Halbleiter-Übergittern In dieser Arbeit werden Halbleiter-Übergitter mit flachen Barrieren und schmalen Bandlücken eingesetzt, um den Effekt des Zener-Durchbruchs zu untersuchen. In diesen Strukturen wird das Zener-Tunneln im Elektronen-Spektrum der Wannier-Stark-Leiter adressiert. Dabei handelt es sich um die Kopplung von Elektronen-Zuständen eines einzelnen Minibandes unterhalb der Potentialbarriere des Quantentopfes mit Zuständen oberhalb der Barriere. Die Feldabhängigkeit der Wannier-Stark-Leiter-Zustände wurde im optischen Interband-Spektrum detektiert. Übergitter mit unterschiedlichen Geometrien wurden untersucht, um den Einfluss der spezifischen Miniband-Struktur auf die Charakteristiken des Zener-Tunnelns aufzuklären. Es wurde gezeigt, dass im Regime des Zener-Tunnelns das Wannier-Stark-Leiter-Bild nicht mehr gültig ist. Dabei wird demonstriert, dass Tunneln zu einer feldabhängigen Delokalisierung der Wannier-Stark-Leiter-Zustände führt. Außerdem wird die Kohärenz-Lebensdauer der Polarisation analysiert. Sie bildet die Tunneln-Wahrscheinlichkeit ab. II. Terahertz Emission von Exzitonen-Wellen-Paketen in Halbleiter-Übergittern Mit Hilfe von Terahertz-Spektroskopie wurde die kohärente Intraband-Dynamik von Exzitonen-Wellen-Paketen in vorgespannten Halbleiter-Übergittern nach der selektiven, ultrakurzen Anregung des Wannier-Stark-Leiter-Spektrums untersucht. Die Dynamik von Bloch-Oszillatonen wurde durch spektral breitbandiger Anregung detektiert. Es wird gezeigt, dass die Amplitude von Bloch-Oszillationen durch die Änderung der Energie des Anrege-Pulses beeinflusst werden kann. Die experimentellen Resultate können nur in einem ganzheitlichen Exzitonenbild erklärt werden. Es umfaßt die gebundenen 1s-Exziton-Zustände und das zugehörige Exzitonen-Kontinuum in der Quantentopfschicht. Der Intraband-Dipol einzelner Wannier-Stark-Leiter-Exzitonen wurde durch die Detektion der Terahertz-Antwort auf die Anregung der Wannier-Stark-Leiter mit einem spektral schmalen Anrege-Puls vermessen. Außerdem wird in den Experimenten ein zuvor ungekannten Mechanismus der Anregung von bloch-oszillierenden Wellen-Paketen beobachtet. Dieser Effekt wird für ein eingestrahltes Anrege-Spektrum, welches spektral zu schmal für die Anregung einer Überlagerung von Wannier-Stark-Leiter-Zuständen ist, demonstriert. Der Mechanismus basiert auf die unmittelbare, nicht-adiabatische Änderung des effektiven, internen, statischen Feldes auf Grund der Anregung von Elektron-Loch-Paaren mit permanentem Dipolmoment. Die nicht-adiabatische Anregung von Bloch-Oszillationen ist ein hoch nicht-linearer Effekt, der durch starke Exziton-Exziton Wechselwirkung vermittelt wird. Die zentrale Rolle, die die Exziton-Exziton Wechselwirkung in der Intraband-Dynamik spielt, wurde besonders deutlich bei der selektiven Anregung der Wannier-Stark-Leiter durch zwei spekral schmale Laserlinien. Die Experimente demonstrieren eine resonante Überhöhung des Intraband-Übergangs-Matrix-Elements, wenn 1s-Exziton-Wellen-Pakete angeregt werden.
|
38 |
Mesoscopic wave phenomena in electronic and optical ring structuresHentschel, Martina 29 October 2001 (has links)
Gegenstand dieser Arbeit sind Wellenphänomene in mesoskopischen Ringstrukturen. In Teil I der Arbeit befassen wir uns mit spinabhängigem Transport von Elektronen in effektiv eindimensionalen Ringen in Gegenwart inhomogener Magnetfelder. Wir benutzen die exakten Lösungen der Schrödinger-Gleichung im allgemeinen nicht-adiabatischen Fall in einem Transfer-Matrix-Formalismus und untersuchen Auswirkungen von geometrischen Phasen auf den Magnetwiderstand. Für den Spezialfall eines Magnetfeldes in der Ringebene sagen wir einen interessanten Spin-Flip-Effekt vorher, der die Steuerung der Polarisationsrichtung von Elektronen über einen externen Aharonov-Bohm-Fluß erlaubt. Optische mesoskopische Systeme sind Thema von Teil II dieser Arbeit. Wir betrachten zweidimensionale annulare Strukturen, charakterisiert durch unterschiedliche Brechungsindizes, sowohl im klassischen Bild der geometrischen Optik als auch mit Wellenmethoden auf der Grundlage der Maxwellschen Gleichungen. Insbesondere diskutieren wir erstmals eine Streumatrixbeschreibung optischer Mikroresonatoren und wenden sie auf das dielektrische annulare Billard an. Ein Vergleich der Ergebnisse des Wellen- und Strahlenbildes liefert eine gute Übereinstimmung, jedoch sind im Grenzfall großer Wellenlängen von der Ordnung der Systemabmessungen Korrekturen zum Strahlenbild nötig. Wir zeigen am Beispiel von Fresnel-Gesetzen für gekrümmte Oberflächen erstmals, daß der Goos-Hänchen-Effekt diese Korrekturen quantitativ erfaßt. Ausgehend von der Wellenbeschreibung leiten wir neue analytische Formeln für verallgemeinerte Fresnel-Gesetze für beide möglichen Polarisationsrichtungen ab. Die Anwendung des Strahlenbildes erlaubt eine schlüssige Interpretation eines Experiments mit einer quadrupolaren Glasfaser, außerdem schlagen wir Strahlenkonzepte als Grundlage der Konstruktion von Mikrolasern mit maßgeschneiderten Charakteristika vor. / In this work we investigate wave phenomena in mesoscopic systems using different theoretical approaches. In Part I, we focus on effectively one-dimensional electronic ring structures and address the phenomenon of geometric phases in spin-dependent electronic transport in the presence of non-uniform magnetic fields. In the general non-adiabatic case, exact solutions of the Schrödinger equation are used in a transfer matrix formalism to compute the transmission probability through the ring. In the magneto-conductance we identify clear signatures of interference effects due to geometric phases, for example in rings where the non-uniform field is created by a central micromagnet. For the special case of an in-plane magnetic field we predict an interesting spin-flip effect that allows one to control the spin polarization of electrons by applying an external Aharonov-Bohm flux. Optical mesoscopic systems are the subject of Part II. We consider two-dimensional annular structures characterized by different refractive indices, and apply classical methods from geometric optics as well as wave concepts based on Maxwell's equations. For the first time, an S-matrix approach is successfully employed in the description of resonances in optical microresonators; in particular we propose the dielectric annular billiard as an attractive model system. Comparing ray and wave pictures, we find general agreement, except for large wavelengths of the order of the system size, where corrections to the ray model are necessary. The Goos-Hänchen effect as an extension of the ray picture is shown to quantitatively account for wave modifications of Fresnel's laws due to curved interfaces. We derive novel analytical expressions for the corrected Fresnel formulas for both polarizations of light. Motivated by the successful ray description, we give a conclusive interpretation of a recent filter experiment on a quadrupolar glass fibre, and suggest novel concepts for microresonator-based lasers.
|
Page generated in 0.0594 seconds