Spelling suggestions: "subject:"levy processes."" "subject:"jevy processes.""
21 |
The Levy-LIBOR model with default riskWalljee, Raabia 03 1900 (has links)
Thesis (MSc)--Stellenbosch University, 2015 / ENGLISH ABSTRACT : In recent years, the use of Lévy processes as a modelling tool has come to be viewed more favourably than the use of the classical Brownian motion setup. The reason for this is that these processes provide more flexibility and also capture more of the ’real world’ dynamics of the model. Hence the use of Lévy processes for financial modelling is a motivating factor behind this research
presentation. As a starting point a framework for the LIBOR market model with dynamics driven by a Lévy process instead of the classical Brownian motion setup is presented. When modelling LIBOR rates the use of a more realistic driving process is important since these rates are the most realistic interest rates used in the market of financial trading on a daily basis. Since the financial crisis there has been an increasing demand and need for efficient modelling and management of risk within the market. This has further led to the motivation of the use of Lévy based models for the modelling of credit risky financial instruments. The motivation stems from the basic properties of stationary and independent increments of Lévy processes. With these properties, the model is able to better account for any unexpected behaviour within the market, usually referred to as "jumps". Taking both of these factors into account, there is much motivation for the construction of a model driven by Lévy processes which is able to model credit risk and credit risky instruments. The model for LIBOR rates driven by these
processes was first introduced by Eberlein and Özkan (2005) and is known as
the Lévy-LIBOR model. In order to account for the credit risk in the market, the Lévy-LIBOR model with default risk was constructed. This was initially done by Kluge (2005) and then formally introduced in the paper by Eberlein
et al. (2006). This thesis aims to present the theoretical construction of the model as done in the above mentioned references. The construction includes the consideration of recovery rates associated to the default event as well as a
pricing formula for some popular credit derivatives. / AFRIKAANSE OPSOMMING : In onlangse jare, is die gebruik van Lévy-prosesse as ’n modellerings instrument
baie meer gunstig gevind as die gebruik van die klassieke Brownse bewegingsproses opstel. Die rede hiervoor is dat hierdie prosesse meer buigsaamheid verskaf en die dinamiek van die model wat die praktyk beskryf, beter hierin
vervat word. Dus is die gebruik van Lévy-prosesse vir finansiële modellering ’n motiverende faktor vir hierdie navorsingsaanbieding. As beginput word ’n raamwerk vir die LIBOR mark model met dinamika, gedryf deur ’n Lévy-proses in plaas van die klassieke Brownse bewegings opstel,
aangebied. Wanneer LIBOR-koerse gemodelleer word is die gebruik van ’n meer realistiese proses belangriker aangesien hierdie koerse die mees realistiese koerse is wat in die finansiële mark op ’n daaglikse basis gebruik word. Sedert die finansiële krisis was daar ’n toenemende aanvraag en behoefte aan doeltreffende modellering en die bestaan van risiko binne die mark. Dit het verder gelei tot die motivering van Lévy-gebaseerde modelle vir die modellering van finansiële instrumente wat in die besonder aan kridietrisiko onderhewig is. Die motivering spruit uit die basiese eienskappe van stasionêre en onafhanklike inkremente van Lévy-prosesse. Met hierdie eienskappe is die model in staat
om enige onverwagte gedrag (bekend as spronge) vas te vang. Deur hierdie faktore in ag te neem, is daar genoeg motivering vir die bou van ’n model gedryf deur Lévy-prosesse wat in staat is om kredietrisiko en instrumente onderhewig hieraan te modelleer. Die model vir LIBOR-koerse
gedryf deur hierdie prosesse was oorspronklik bekendgestel deur Eberlein and Özkan (2005) en staan beken as die Lévy-LIBOR model. Om die kredietrisiko
in die mark te akkommodeer word die Lévy-LIBOR model met "default risk" gekonstrueer. Dit was aanvanklik deur Kluge (2005) gedoen en formeel in die
artikel bekendgestel deur Eberlein et al. (2006). Die doel van hierdie tesis is om die teoretiese konstruksie van die model aan te bied soos gedoen in die bogenoemde verwysings. Die konstruksie sluit ondermeer in die terugkrygingskoers
wat met die wanbetaling geassosieer word, sowel as ’n prysingsformule vir ’n paar bekende krediet afgeleide instrumente.
|
22 |
Multivariate Measures of Dependence for Random Variables and Levy ProcessesBelu, Alexandru C. 21 May 2012 (has links)
No description available.
|
23 |
Finite dimensional realizations for term structure models driven by semimartingalesTappe, Stefan 10 November 2005 (has links)
Es sei ein Heath-Jarrow-Morton Zinsstrukturmodell df(t,T) = alpha(t,T)dt + sigma(t,T)dX_t gegeben, angetrieben von einem mehrdimensionalen Semimartingal X. Das Ziel dieser Arbeit besteht darin, die Existenz endlich dimensionaler Realisierungen für solche Modelle zu untersuchen, wobei wir als treibende Prozesse die Klasse der Grigelionis Prozesse wählen, die insbesondere Levy Prozesse enthält. Zur Bearbeitung der Fragestellung werden zwei veschiedene Ansätze verfolgt. Wir dehnen die Ideen aus der Differenzialgeometrie von Björk und Svensson (2001) auf die vorliegende Situation aus und zeigen, dass das in der zitierten Arbeit bewiesene Kriterium für die Existenz endlich dimensionaler Realisierungen in unserem Fall als notwendiges Kriterium dienlich ist. Dieses Resultat wird auf konkrete Volatilitätsstrukturen angewandt. Im Kontext von sogenannten Benchmark Realisierungen, die eine natürliche Verallgemeinerung von Short Rate Realisierungen darstellen, leiten wir Integro-Differenzialgleichungen her, die für die Untersuchung der Existenz endlich dimensionaler Realisierungen hilfreich sind. Als Verallgemeinerung eines Resultats von Jeffrey (1995) beweisen wir außerdem, dass Zinsstrukturmodelle, die eine generische Benchmark Realisierung besitzen, notwendigerweise eine singuläre Hessesche Matrix haben. Beide Ansätze zeigen, dass neue Phänomene auftreten, sobald der treibende Prozess X Sprünge macht. Es gibt dann auf einmal nur noch sehr wenige Zinsstrukturmodelle, die endlich dimensionale Realisierungen zulassen, was ein beträchtlicher Unterschied zu solchen Modellen ist, die von einer Brownschen Bewegung angetrieben werden. Aus diesem Grund zeigen wir, dass für die in der Literatur oft behandelten Modelle mit deterministischer Richtungsvolatilität eine Folge von endlich dimensionalen Systemen existiert, die gegen das Zinsmodell konvergieren. / Let f(t,T) be a term structure model of Heath-Jarrow-Morton type df(t,T) = alpha(t,T)dt + sigma(t,T)dX_t, driven by a multidimensional semimartingale X. Our objective is to study the existence of finite dimensional realizations for equations of this kind. Choosing the class of Grigelionis processes (including in particular Levy processes) as driving processes, we approach this problem from two different directions. Extending the ideas from differential geometry in Björk and Svensson (2001), we show that the criterion for the existence of finite dimensional realizations, proven in the aforementioned paper, still serves as a necessary condition in our setup. This result is applied to concrete volatility structures. In the context of benchmark realizations, which are a natural generalization of short rate realizations, we derive integro-differential equations, suitable for the analysis of the realization problem. Generalizing Jeffrey (1995), we also prove a result stating that forward rate models, which generically possess a benchmark realization, must have a singular Hessian matrix. Both approaches reveal that, with regard to the results known for driving Wiener processes, new phenomena emerge, as soon as the driving process X has jumps. In particular, the occurrence of jumps severely limits the range of models that admit finite dimensional realizations. For this reason we prove, for the often considered case of deterministic direction volatility structures, the existence of finite dimensional systems converging to the forward rate model.
|
24 |
Modélisation de la dégradation, maintenance conditionnelle et pronostic : usage des processus de diffusion / The use of diffusion process for deterioration modeling, condition-based maintenance and prognosisGhamlouch, Houda 21 June 2016 (has links)
Aujourd’hui la prédiction des défaillances de certains systèmes industriels est devenue indispensable pour l’amélioration de la fiabilité et de la rentabilité de ces derniers. Cette prédiction s’appuie principalement sur l’analyse d’évolution du niveau de dégradation du système. Pour les systèmes dont l’état de détérioration n’est pas directement observable, la définition d’indicateurs de santé mesurables est nécessaire. Une modélisation du processus de dégradation à partir de ces données peut être ensuite effectuée. Dans cette thèse, nous considérons un ensemble d’indicateurs non-monotones pour un système opérant dans un environnement dynamique. Compte tenu des principales caractéristiques des données ainsi que de l’impact des conditions environnementales et de leur instabilité, une modélisation stochastique de l’évolution de ces indicateurs est proposée. Les modèles proposés se basent principalement sur une combinaison d’un processus de Wiener et de processus de sauts. Les motivations, les méthodes de calibration, l’utilité et les limites de chaque modèle sont discutées. Nous proposons ensuite une approche pour l’aide à la décision concernant les actions de maintenance préventive. Cette approche consiste à évaluer la valeur d’une option réelle qui présente la possibilité d’«Attendre avant d’Agir» suite à un signal d’avertissement sur une défaillance probable. Une application de cette approche pour le cas d'une éolienne équipée d’un système de surveillance et de gestion est traitée / A major concern for engineers and managers nowadays is to make high quality products and highly reliable systems. In this context, reliability analysis and failure prediction, besides of efficient maintenance decision-making are strongly required. Deterioration modeling and analysis is a fundamental step for the understanding and the anticipation of system behavior. Consider a functional system operating in unstable conditions or environment where the deterioration level is not observable and could not be determined by direct measures. For this system a set of measurable health indicator that indirectly reflects the system working conditions and deterioration level can be defined and examined. Considering these indicators, the development of a mathematical model describing the system behavior is required.In this thesis, we consider a set of non-monotone indicators evolving in a dynamic environment. Taking into account the major features of the data evolution as well as the impact of dynamic environment consequences and potential shocks, stochastic models based on Wiener and jump processes are proposed for these indicators. Each model is calibrated and tested, and their limits are discussed. A decision-making approach for preventive maintenance strategies is then proposed. In this approach, knowing the RUL of the system, a simulation-based real options analysis is used in order to determine the best date to maintain. Considering a case study of a wind turbine with PHM structure, the decision optimization approach is described
|
Page generated in 0.059 seconds