• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 480
  • 152
  • 64
  • 59
  • 18
  • 14
  • 14
  • 7
  • 6
  • 4
  • 3
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 944
  • 944
  • 944
  • 385
  • 283
  • 277
  • 181
  • 165
  • 164
  • 152
  • 144
  • 137
  • 136
  • 127
  • 126
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Biomass gasification application on power generation: BIGCC systems comparison and other system design

Zang, Guiyan 01 May 2019 (has links)
Biomass is an attractive renewable energy resource for electricity generation, which has the potential to protect air quality, reduce dependence on fossil fuel, and improve forest health. Biomass gasification is a technology that transfers solid or liquid biomass into gaseous energy carrier (syngas) to increase the efficiency of electricity generation. The objective of this thesis is to supply a detailed feasibility study and provide a state-of-the-art economical pathway on biomass gasification application. The work of this dissertation can be separated into two parts: commercial-scale biomass integrated gasification combined cycle (BIGCC) power plants comparison and other biomass gasification system design. The first part compares eight BIGCC systems with three groups of technology variations of gasification agent, syngas combustion method, and CO2 capture and storage. By comparing on performance, economic, and environmental indicators of these systems, it is found that BIGCC systems have higher exergy efficiency and lower emissions than biomass combustion electricity production system and electricity grid. However, its levelized cost of electricity is around 27% higher than the average electricity market price. To reduce the BIGCC system’s cost, in the second part of this thesis, the potential for waste material gasification has been discussed. This part discussed the tire gasification and the gasification technology application for avian influenza poultry management. Results showed that tire gasification has a lower cost than natural gas which has the potential to reduce the BIGCC system’s cost. Moreover, gasification is an effective and economical available approach for avian influenza poultry management.
122

Techno-Economic Feasibility and Life Cycle Assessment of Dairy Effluent to Biofuel via Hydrothermal Liquefaction

Summers, Hailey M. 01 May 2015 (has links)
Uncertainty in the global energy market and negative environmental impacts associated with fossil fuels has led to renewed interest in alternative fuels. The scalability of new technologies and production pathways are critically being evaluated through economic feasibility studies and environmental impact assessments. This work investigated the conversion of agricultural wast, delactosed whey permeate (delac), with yeast fermentation for the generation of biofuel via hydrothermal liquefaction (HTL). The feasibility of the process was demonstrated at laboratory scale with data leveraged to validate systems models used to perform industrial-scale economic and environmental impact analyses. Results showed a minimum fuel selling point of $4.56 per gasoline gallon equivalent (CGE), a net energy ratio (NER), defined as energy required to process biofuel divided by energy in the biofuel produced, of 0.81 and greenhouse gas (GHG) emissions of 30.03 g CO2-eq MJ-1. High Production costs can be attributed to operational temperatures of HTL while the high lipid yields of the yeast counter these heating demands, resulting in a favorable NER. The operating conditions of both fermentation and HTL contributed to the majority of GHG emissions. Further discussion focuses on optimization of the process, on the metrics of TEA and LCA and the evaluation of the process, on the metrics of TEA and LCA, and the evaluation of the process through a sensitivity analysis that highlights areas for directed research to improve commercial feasibility.
123

Selection of Energy Systems in Aquaculture through a Decision Support Tool Considering Economic and Environmental Sustainability

Kim, Youngwoon 30 March 2018 (has links)
Aquaculture had already been distinguished as an important component of global food security and economics. However, aquaculture has expanded at the cost of natural resources and the environment. The vulnerability of the aquaculture industry due to the consequences of global environmental changes and energy price fluctuations has been addressed in various studies. The identification, planning, and implementation of sustainable energy systems are important to ensure the long term economic and environmental sustainability of aquaculture. This research investigated sustainable energy systems for aquaculture using a life cycle approach, allowing for the identification of the most sustainable energy options under different geographical and economic contexts. This also provides useful insights for the sustainable development of aquaculture with energy systems. The main objectives were to develop a statistical model for energy intensity of aquaculture (Chapter 2) and a user-friendly tool that can assist in the decision making of choosing the sustainable energy systems in aquaculture (Chapter 3), and to investigate the applicability of solar hot water systems for aquaculture (Chapter 4) and the potential improvement of the sustainability performance of aquaculture with energy systems (Chapter 5). In the first task, the main influencing factors on the energy use of aquaculture were investigated via a statistical analysis method. Results showed that natural trophic level of species, culture technology, culture system intensity, and local climatic conditions are important factors. With the key variables, an energy intensity prediction model was developed and applied to explore an energy efficient growth strategy for global aquaculture. Energy use in future global aquaculture would be significantly reduced with a selective extensification of global aquaculture. Also, climate change with consideration of temperature and precipitation would help reduce the energy use of global aquaculture as warm climate zones are more dominant in major aquaculture producing countries. In the second task, an MS-Excel based decision support tool was developed to assist the selection of environmentally and economically sustainable energy systems (single source or hybrid sources) in aquaculture. Through a case study, the most sustainable energy options for U.S. aquaponics systems were investigated, considering different geographical and economic contexts in five U.S. states (FL, HI, WA, LA, and ME). Results showed that solar systems (solar photo-voltaic and solar hot water heater) could be the most sustainable energy options for U.S. aquaponics due to their low environmental impacts and economic benefits. In the third task, results showed that heating strategies, setting (indoor or outdoor), and local climatic conditions played a pivotal role in determining the environmental and economic impacts of solar hot water systems in aquaculture. The lowest environmental impact was found with a 20% heating strategy for outdoor aquaculture systems under hot climate conditions, while the most economical case was found with an 80% heating strategy for indoor aquaculture systems under moderate climate conditions. Further improvements of environmental and economic performances could be achieved with consideration of water source (groundwater and surface) and design (horizontally fixed or optimally tilted solar thermal collector). In the fourth task, environmental and economic impacts of alternative energy systems were obtained using the tool which was developed in the second task. Results showed that local geographical and weather characteristics, local energy prices, and incentive availability were important parameters to determine the sustainability performance of alternative energy systems in aquaculture. The use of renewable energy was more sustainable than conventional energy systems in the regions where there are favorable geographical conditions, high electricity and fuel prices, and incentives. The use of solar photovoltaic with a thin-film technology was the most sustainable electricity generation options in most states of the U.S., while the use of natural gas boilers was the most sustainable heating options in most states of the U.S. The sustainability performance of the solar photovoltaic systems can be further improved through either a technological advancement or an incentive, while financial support is more effective for solar hot water systems. The application of anaerobic digestion as a backup system in general will reduce the sustainability of hybrid heating system; however, the hybrid biogas-diesel heating system has better sustainability performance compared with a diesel heating system if it is used for medium to large scale fish farms. This research provides an understanding of energy use characteristics of current aquaculture systems, and insights for the planning of sustainable energy supply systems in aquaculture, considering different growth strategies, effects of climate change, and alternative energy systems with various operational strategies and design factors. Furthermore, the decision-making tool was made to be accessible to fish farmers, state-wide planners, and regulators.
124

A Life Cycle Comparison of Light-Frame Wood and Insulated Concrete Form Building Envelopes: Energy Use and Green House Gases

Matthews, Sherman Authur 01 August 2011 (has links)
Given the building sector’s substantial contribution to global energy use and green house gas (GHG) emissions, it is of great importance that only the most effective building envelopes are utilized. Conventional light-frame wood building envelopes are highly popular due to their ease of construction and building economy; however the life cycle performance of the building envelope is often overlooked when this selection is made. Although insulated concrete form (ICF) building envelopes generally require a substantially higher embodied energy input, it should be considered that improvements during a building’s operation phase can offers significant energy returns, ultimately reducing the building’s life cycle energy use and GHG intensity. Therefore, an assessment is conducted regarding the life cycle energy use and GHG intensity of the ICF building envelope, in addition to two light-frame wood building envelopes; the average light wood frame envelope (U.S. Department of Energy, 2007), and a more highly insulated wood frame envelope. The operation phase of the building envelopes proves to be of greatest significance, as it is attributed to 95- 97% of the total life cycle energy use, and 93-96% of life cycle GHG emissions, assuming a 100 year life cycle. Ultimately, the life cycle performance of the ICF building envelope is superior to the two wood frame envelopes due to its improvements in the operation phase. The ICF building envelope has a life cycle energy requirement of 11% to 14% less than the two light-frame wood envelopes, and a 10% to 12% lower life cycle GHG intensity. Although the increased thermal resistance certainly contributes to the superior life cycle performance of the ICF envelope, the improved infiltration leakage area of the envelope is key to its operational performance, and subsequently to its improved life cycle performance. End of life energy use for the demolition, recycle, and disposal of the building envelopes is nearly negligible, as it is attributed to less than 0.3% of the life cycle energy for any of the envelope scenarios.
125

Life Cycle Thinking in Environmentally Preferable Procurement

Hochschorner, Elisabeth January 2008 (has links)
Products generate environmental impacts during their life cycle by consuming raw materials and energy, releasing emissions and producing waste. A procurement organisation can be a considerable driving force for more environmentally friendly products e.g. by requiring that products meet certain environmental criteria. The scope for environmental consideration when procuring materiel can be limited by lack of reliable information about the environmental characteristics of the product or service. Different types of tools (e.g. eco-labels, guidelines, checklists and tools for environmental assessment) can contribute some knowledge and help identify environmentally preferable products. This thesis focuses on use of tools for environmental consideration in Swedish defence acquisition but the results are also relevant for other organisations, since the procurement process analysed is rather general and the legal requirements are similar for other public organisations in Europe. A Swedish government decision in 1998 requires the Swedish Armed Forces (SAF) and Defence Materiel Administration (FMV) to take environmental consideration in all phases of the acquisition process. The importance of a life cycle perspective is stressed in several SAF and FMV environmental documents. The starting point of this thesis was that environmental consideration should be taken in the Swedish acquisition of defence materiel, considering the whole life cycle of products, with the aim of formulating proposals on environmentally friendly procurement. Some Ecodesign tools were reviewed and evaluated, two methods for simplified Life Cycle Assessment (LCA) were compared, tools and methodology were recommended, and used to study military materiel, and environmental Life Cycle Costing (LCC) was examined. In environmental work lacking a life cycle perspective, the most significant aspects risk being overlooked. Use of quantitative and/or simplified LCAs and inclusion of environmental costs in LCC are therefore recommended. LCA proved an appropriate tool for involving environmental consideration in the acquisition process, since it focuses on products and their life cycle. The MECO method proved best for simplified LCA. These suggested methods were evaluated by interviews with actors in the acquisition process. Four areas for LCA use in acquisition were identified: learning about environmental aspects of products; fulfilling customer requirements; setting environmental requirements; and choosing between alternatives. The interviewees were interested in using LCA, but there is a need for an initiative by one or several actors if the method is to be used regularly and the results must be communicated within the organisations involved in procurement. Environmental consideration should be taken early in the acquisition process and environmental matters integrated into other activities of the organisations involved. Environmental costs are not explicitly considered in the LCCs used by the interviewees today, but internal environmental costs should be included. Costs likely to be internal can also be included. / QC 20100616
126

Life Cycle Thinking and Waste Policy : Between Science and Society

Lazarevic, David January 2012 (has links)
This study investigates the application of life cycle thinking (LCT) and life cycle assessment (LCA) in the field of waste management from perspectives based in the social sciences. LCT is explored through the theoretical construct of regimes, drawing theoretical resources from a combination of the ‘pragmatic turn’, the economics of conventions and transition theory.This work is based on eight papers treating theoretical arguments, qualitative and quantitative analysis, case studies and semi-structured interview data. LCT is placed in the context of contemporary societies. LCA is seen as an instrument of quantification and evaluation used by actors which have both similar and disparate objectives, and who offer justifications for its use through arguments embedded in conflicting pluralities of worth. Furthermore, this work analyses LCA as a tool for the qualification of the waste hierarchy; a waste management principle articulating a convention based on closed material cycles. This study argues that the technological trajectory of waste management regimes has been significantly influenced, inter alia, by actors’ institutional articulation of the waste hierarchy at national and territorial levels. It discusses the legitimacy of LCA, and the quantitative application of LCT, as an intermediary object used to qualify the waste hierarchy. Furthermore, LCT is placed in a prospective context which may be used to assist in the transition toward sustainable waste management. / <p>QC 20121127</p>
127

Integrated environmental assessment methods as a tool for sustainable design : some case studies

Strömberg, Larissa January 2005 (has links)
QC 20100930
128

Industrial cleaning with Qlean Water : a case study of printed circuit boards

Lindahl, Mattias, Svensson, Niclas, Svensson, Bo, Sundin, Erik January 2013 (has links)
Many manufacturing companies are looking for ways to substitute environmentally problematic cleaning methods for surface treatments with more environmentally friendly ones. In this paper, one potential solution is described. The Qlean method, based on cleaning with highly pure water (in this paper defined as Qlean Water), is a novel cleaning method. This method, now utilized at one plant at a leading major international electronic company, has substituted previous chemical-based methods for cleaning printed circuit boards prior to lacquering. This paper presents, based on that company's primary data, a comparative study using environmental analysis and economic life cycle cost review between cleaning with Qlean Water and conventional cleaning. The focus is on the environmental and economic performance of the two alternatives. The conclusion is that Qlean Water offers both a significant economic and environmental cost reduction and a better product. This is the case even though all identified economic benefits derived from using Qlean Water, e.g. that the quality and technical lifetime have been extended for the printed circuit boards with the Qlean Water cleaning method, are not considered in the economic analysis.
129

Assessing the Social Performance of Products: Developing a Set of Indicators for Vattenfall AB Connected to the International EPD® system

Welling, Sebastian January 2013 (has links)
A set of indicators has been developed by the author of this work to assess the social performance of Vattenfall’s products (electricity &amp; heat). This set of indicators has been adapted to the requirements of the International EPD® system. The aim has been to create a set of indicators that can be applied to all processes within the lifecycle. The indicators are supposed to make a best possible statement of the social performance of a companies’ product, including the most relevant issues and topics within the pillar of social science and social sustainability. The method used for the development of the indicators is the Delphi method. The Delphi process includes several rounds of reviewing. A group of experts usually carries out the reviewing. In this study five rounds of reviewing has been conducted with the help of nine experts. The first round has been an extensive literature review. The 390 indicators found in the literature have been classified according to the system and the instruction of S-LCA, which are described in the Guidelines for Social Life Cycle Assessment of Products. The fifth round of reviewing has been the last one and consensus on the list of indicators could be reached. The outcome of the development process has been a set of 30 indicators. Not all subcategories proposed in UNEP/SETAC’s Guidelines for Social Life Cycle Assessment of Products have been covered. The indicators have been distinguished into two categories: core and additional. Some important social issues could not be expressed in the form of an indicator. They have been added in the final outcome of the paper, the ‘socioprofile’, as additional information. The measurement and impact assessment of qualitative indicators have been a major challenge of this study. Data availability can be seen as another critical field of the study and the application of the indicators. Other studies that have been conducted focused on a lower amount of indicators. The study has shown the possibility to quantify and measure social impacts to a certain degree. The proposed indicators are aiming at a globally focused assessment of social sustainability. The inclusion of experts and the group discussions with those experts have shown the importance of these indicators. The next step in the development of social sustainability indicators is the implementation of these indicators in a practical application and the study of the outcome. To be applicable within the International EPD® system, the Product Category Rules also have to be updated to allow for a Sustainable Product Declaration.
130

Eco-design implementation for complex industrial system : From scenario-based LCA to the definition of an eco-innovative R&D projects portfolio

Cluzel, François 27 September 2012 (has links) (PDF)
Face to the growing awareness of environmental concerns issued from human activities, eco-design aims at offering a satisfying answer in the products and services development field. However when the considered products become complex industrial systems, there is a lack of adapted methodologies and tools. These systems are among others characterised by a large number of components and subsystems, an extremely long and uncertain life cycle, or complex interactions with their geographical and industrial environment. This change of scale actually brings different constraints, as well in the evaluation of environmental impacts generated all along the system life cycle (data management and quality, detail level according to available resources...) as in the identification of adapted answers (management of multidisciplinary aspects and available resources, players training, inclusion in an upstream R&D context...). So this dissertation aims at developing a methodology to implement ecodesign of complex industrial systems. A general methodology is first proposed, based on a DMAIC process (Define, Measure, Analyse, Improve, Control). This methodology allows defining in a structured way the framework (objectives, resources, perimeter, phasing...) and rigorously supporting the ecodesign approach applied on the system. A first step of environmental evaluation based on Life-Cycle Assessment (LCA) is thus performed at a high systemic level. Given the complexity of the system life cycle as well as the exploitation variability that may exist from one site to another, a scenario-based approach is proposed to quickly consider the space of possible environmental impacts. Scenarios of exploitation are defined thanks to the SRI (Stanford Research Institute) matrix and they include numerous elements that are rarely considered in LCA, like preventive and corrective maintenance, subsystems upgrading or lifetime modulation according to the economic context. At the conclusion of this LCA the main impacting elements of the system life cycle are known and they permit to initiate the second step of the eco-design approach centred on environmental improvement. A multidisciplinary working group perform a creativity session centred on the eco-design strategy wheel (or Brezet wheel), a resource-efficient eco-innovation tool that requires only a basic environmental knowledge. Ideas generated during creativity are then analysed through three successive filters allowing: (1) to pre-select and to refine the best projects; (2) to build a R&D projects portfolio thanks to a multi-criteria approach assessing not only their environmental performance, but also their technical, economic and customers' value creation performance; (3) to control the portfolio balance according to the company strategy and the projects diversity (short/middle/long term aspect, systemic level...). All this work was applied and validated at Alstom Grid on electrical conversion substations used in the primary aluminium industry. The methodology deployment has allowed initiating a robust eco-design approach recognized by the company and finally generating a portfolio composed of 9 eco-innovative R&D projects that will be started in the coming months.

Page generated in 0.0803 seconds