• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 23
  • 23
  • 18
  • 16
  • 12
  • 10
  • 10
  • 8
  • 7
  • 7
  • 6
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Linear Ferrite Generator Prototype for Wave Power / Linjär Ferritgeneratorprototyp för vågkraft

Giske, Gustav, Hug, Mikael January 2018 (has links)
A linear, direct drive, scale model prototype generator has been designed at KTH Royal Institute of technology in Sweden. The prototype is based on a scaled down electromagnetic optimization made by researcher Anders Hagnestål. The aim of the project is to verify the calculations experimentally and by using ferrite magnets, there is an opportunity to develop a competitively priced and environmentally friendly generator for wave power plants. Based on the electromagnetic optimization a mechanical design has been developed using computer aided design (CAD). Structural calculations have been made to ensure that the design withstands the large magnetic forces involved. Furthermore, different techniques and challenges appearing in the build of the prototype have been evaluated and explained. A description of the advantages of the design and the basic electromagnetic design is also included. The build is underway and is expected to be finished during 2018. / En linjär direktdriven generatorprototyp har designats på KTH, Kungliga Tekniska högskolan i Sverige. Prototypen är baserad på en nerskalad elektromagnetisk optimering gjord av Anders Hagnestål. Målet med projektet är att verifiera beräkningar experimentellt och genom att använda ferritmagneter finns det en möjlighet att utveckla en konkurrenskraftig och miljövänligare generator för vågkraftverk. Baserat på den elektromagnetiska optimeringen har en mekanisk design tagits fram med hjälp av datorstödd design (CAD). Hållfasthetsberäkningar har gjorts för att säkerställa att designen klarar av de stora magnetiska krafter den utsätts för. Vidare har även olika tekniker och utmaningar som uppstått i byggnationen utvärderats och beskrivits. En beskrivning av designens fördelar och den grundläggande elektromagnetiska designen har även inkluderats. Byggnationen pågår och beräknas vara färdig under 2018.
12

Automatic Adjustment of the Floatation Level for a Tight-moored Buoy

Healy Strömgren, William January 2005 (has links)
<p>Denna rapport ger förslag på olika metoder att automatiskt justera flytläget på en statiskt förankrad boj, en överblick över de processer som styr ändringen av vattennivån och en statisktisk analys på vattennivåförändringarna vid Stockholm, Kungsholmsfort och Kungsvik.</p><p>Beroende på vattenivåns variation finns olika metoder för justering. Områden med små variationer av vattennivå lämpar det sig bäst utan någon som helst justering av flytläget. Områden med inte för stora tidvattensförändringar bör justeras med ett system bestående av vinsch, växellåda med en utväxling på 10 000:1, en 12 V DC motor, ett skötselfritt 12 V batteri, en luftlindad linjärgenerator och en trådtöjningsgivare. Områden med stora variationer i tidvatten behöver en avlastning för motorn i form av en fjäder och dämpare. De monteras horizontellt inuti bojen för att skyddas från den yttre miljön.</p><p>Den statistiska analysen påvisade de största vattennivåändringarna vid både Kungsviks och Kungsholmsforts mätstationer, båda uppvisade ett intervall på 1,6 m mellan minimum och maximum. Kungsvik var den station med de största dagliga variationerna, detta på grund av tidvattnets påverkan i området.</p> / <p>This thesis gives examples of different methods of automated adjustment of floatation level for a static moored buoy, an overview of the theories behind water level change and a statistical analysis of the water level changes for Stockholm, Kungsholmsfort and Kungsvik.</p><p>Depending on the range and frequency of the water level change different methods of adjustment are recommended. For areas with small changes in sea level the best choice would be no adjustment of the floatation level. Areas that are influenced by moderate tidal ranges should incorporate a system of regulation consisting of a winch, gearbox with a gear ratio of around 10,000:1, 12 V DC motor, 12 V maintenance free battery, air coiled linear generator and a strain gauge. For areas with large tidal ranges the previous system should be complimented with a horizontally mounted spring, inside the buoy, to lessen the loads on the motor.</p><p>The statistical analysis found the largest extremes in water level of the three sites to be at Kungsvik and Kungsholmsfort, both exhibiting a range of almost 1.6 m. Kungsvik was the station with the largest daily variations, this is because this is the only station influenced by tidal variations.</p>
13

Contribution à la modélisation électromagnétique d’un générateur linéaire à induction appliquée à un micro-cogénérateur Stirling à piston libre / Contribution to the electromagnetic modeling of a linear induction generator applied to a micro-cogeneration Stirling free-piston

François, Pierre 14 January 2011 (has links)
Cette thèse porte sur le développement d’un cogénérateur résidentiel constitué d’un générateur linéaire asynchrone entraîné par deux moteurs Stirling fonctionnant en mode ‘piston libre double effet’. Les critères caractérisant un tel cogénérateur sont décrits ainsi que ses différents modes d’utilisation dans le domaine résidentiel. Les différentes technologies sont passées en revue.Les équations de la mécanique sur lesquelles se fondent le contrôle du couplage thermoélectrique du cogénérateur et sa stabilité y sont définies. Le générateur électrique est modélisé en vue de calculer les grandeurs électriques des équations à bobines couplées et les grandeurs du schéma électrique équivalent, ce schéma permet d’inverser le modèle.Les résultats des modèles analytiques sont validés par des mesures faites sur des maquettes spécialement conçues. Une étude paramétrique de la structure du générateur a permis d’optimiser ses performances. Les équations de la mécanique et le modèle électrique sont utilisés pour poser les bases d’une optimisation ‘système’ du cogénérateur. / This thesis focuses on the development of a residential cogenerator which consists of a linear induction generator driven by two Stirling engines, free-piston double-acting operating mode. The criteria characterizing such cogenerator are described and its various modes of use in the residential sector. The various technologies are reviewed.The equations of mechanics that underlie the control of the coupling of thermoelectric cogeneration and stability are defined.The electric generator is modeled to calculate the electrical coil coupled equations and the magnitudes of the equivalent circuit, this scheme allows us to reverse the pattern. The results of analytical models are validated by measurements on specially designed models. A parametric study of the structure of the generator has optimized its performances. The equations of mechanical and electrical model are used to lay the groundwork for optimization of all the cogenerator, considered as a system.
14

Sea Level Compensation System for Wave Energy Converters

Castellucci, Valeria January 2016 (has links)
The wave energy converter developed at Uppsala University consists of a linear generator at the seabed driven by the motion of a buoy on the water surface. The energy absorbed by the generator is negatively affected by variations of the mean sea level caused by tides, changes in barometric pressure, strong winds, and storm surges. The work presented in this doctoral thesis aims to investigate the losses in energy absorption for the present generation wave energy converter due to the effect of sea level variations, mainly caused by tides. This goal is achieved through the modeling of the interaction between the waves and the point absorber. An estimation of the economic cost that these losses imply is also made. Moreover, solutions on how to reduce the negative effect of sea level variations are discussed. To this end, two compensation systems which adjust the length of the connection line between the floater and the generator are designed, and the first prototype is built and tested near the Lysekil research site. The theoretical study assesses the energy loss at about 400 coastal points all over the world and for one generator design. The results highlight critical locations where the need for a compensation system appears compelling. The same hydro-mechanic model is applied to a specific site, the Wave Hub on the west coast of Cornwall, United Kingdom, where the energy loss is calculated to be about 53 %. The experimental work led to the construction of a buoy equipped with a screw jack together with its control, measurement and communication systems. The prototype, suitable for sea level variations of small range, is tested and its performance evaluated. A second prototype, suitable for high range variations, is also designed and is currently under construction. One main conclusion is that including the compensation systems in the design of the wave energy converter will increase the competitiveness of the technology from an economic point of view by decreasing its cost per kWh. The need for a cost-effective wave energy converter with increased survivability emphasizes the importance of the presented research and its future development.
15

Numerical Modelling and Statistical Analysis of Ocean Wave Energy Converters and Wave Climates

Li, Wei January 2016 (has links)
Ocean wave energy is considered to be one of the important potential renewable energy resources for sustainable development. Various wave energy converter technologies have been proposed to harvest the energy from ocean waves. This thesis is based on the linear generator wave energy converter developed at Uppsala University. The research in this thesis focuses on the foundation optimization and the power absorption optimization of the wave energy converters and on the wave climate modelling at the Lysekil wave converter test site. The foundation optimization study of the gravity-based foundation of the linear wave energy converter is based on statistical analysis of wave climate data measured at the Lysekil test site. The 25 years return extreme significant wave height and its associated mean zero-crossing period are chosen as the maximum wave for the maximum heave and surge forces evaluation. The power absorption optimization study on the linear generator wave energy converter is based on the wave climate at the Lysekil test site. A frequency-domain simplified numerical model is used with the power take-off damping coefficient chosen as the control parameter for optimizing the power absorption. The results show a large improvement with an optimized power take-off damping coefficient adjusted to the characteristics of the wave climate at the test site. The wave climate modelling studies are based on the wave climate data measured at the Lysekil test site. A new mixed distribution method is proposed for modelling the significant wave height. This method gives impressive goodness of fit with the measured wave data. A copula method is applied to the bivariate joint distribution of the significant wave height and the wave period. The results show an excellent goodness of fit for the Gumbel model. The general applicability of the proposed mixed-distribution method and the copula method are illustrated with wave climate data from four other sites. The results confirm the good performance of the mixed-distribution and the Gumbel copula model for the modelling of significant wave height and bivariate wave climate.
16

Energy from Ocean Waves : Full Scale Experimental Verification of a Wave Energy Converter

Waters, Rafael January 2008 (has links)
A wave energy converter has been constructed and its function and operational characteristics have been thoroughly investigated and published. The wave energy converter was installed in March of 2006 approximately two kilometers off the Swedish west coast in the proximity of the town Lysekil. Since then the converter has been submerged at the research site for over two and a half years and in operation during three time periods for a total of 12 months, the latest being during five months of 2008. Throughout this time the generated electricity has been transmitted to shore and operational data has been recorded. The wave energy converter and its connected electrical system has been continually upgraded and each of the three operational periods have investigated more advanced stages in the progression toward grid connection. The wave energy system has faced the challenges of the ocean and initial results and insights have been reached, most important being that the overall wave energy concept has been verified. Experiments have shown that slowly varying power generation from ocean waves is possible. Apart from the wave energy converter, three shorter studies have been performed. A sensor was designed for measuring the air gap width of the linear generator used in the wave energy converter. The sensor consists of an etched coil, a search coil, that functions passively through induction. Theory and experiment showed good agreement. The Swedish west coast wave climate has been studied in detail. The study used eight years of wave data from 13 sites in the Skagerrak and Kattegatt, and data from a wave measurement buoy located at the wave energy research site. The study resulted in scatter diagrams, hundred year extreme wave estimations, and a mapping of the energy flux in the area. The average energy flux was found to be approximately 5.2 kW/m in the offshore Skagerrak, 2.8 kW/m in the near shore Skagerrak, and 2.4 kW/m in the Kattegat. A method for evaluating renewable energy technologies in terms of economy and engineering solutions has been investigated. The match between the technologies and the fundamental physics of renewable energy sources can be given in terms of the technology’s utilization. It is argued that engineers should strive for a high utilization if competitive technologies are to be developed.
17

Modelling and Experimental Verification of Direct Drive Wave Energy Conversion : Buoy-Generator Dynamics

Eriksson, Mikael January 2007 (has links)
This thesis is focused on development of models and modelling of a wave energy converter in operation. Through the thesis linear potential wave theory has been used to describe the wave-buoy interaction. The differences lie in the generator models, in the simplest model the generator is a mechanical damper characterized by a damping factor. In the most advanced generator model the magnetic fields is calculated the by a FE-method, which gives detailed description of the electric properties and the effect it has on the buoy dynamics. Moreover, an equivalent circuit description of the generator has been tested. It has the same accuracy as the field based model but with a strongly enhanced CPU time. All models are verified against full scale experiments. The models are intended to be used for design of the next generation wave energy converters. Further, the developed models have also been used to study what effect buoy geometry and generator damping have on the ability to energy absorption. In the spring 2006 a full scale wave energy converter was installed at the west coast of Sweden. It was in operation and collected data during three months. During that period the load resistance was varied in order to study the effect on the energy absorption. These collected data was then used in the verification of the developed models. In the year 2002 a wave energy project started at Uppsala University; this work is a part of that larger project which intendeds to develop a viable wave energy conversion concept.
18

Automatic Adjustment of the Floatation Level for a Tight-moored Buoy

Healy Strömgren, William January 2005 (has links)
Denna rapport ger förslag på olika metoder att automatiskt justera flytläget på en statiskt förankrad boj, en överblick över de processer som styr ändringen av vattennivån och en statisktisk analys på vattennivåförändringarna vid Stockholm, Kungsholmsfort och Kungsvik. Beroende på vattenivåns variation finns olika metoder för justering. Områden med små variationer av vattennivå lämpar det sig bäst utan någon som helst justering av flytläget. Områden med inte för stora tidvattensförändringar bör justeras med ett system bestående av vinsch, växellåda med en utväxling på 10 000:1, en 12 V DC motor, ett skötselfritt 12 V batteri, en luftlindad linjärgenerator och en trådtöjningsgivare. Områden med stora variationer i tidvatten behöver en avlastning för motorn i form av en fjäder och dämpare. De monteras horizontellt inuti bojen för att skyddas från den yttre miljön. Den statistiska analysen påvisade de största vattennivåändringarna vid både Kungsviks och Kungsholmsforts mätstationer, båda uppvisade ett intervall på 1,6 m mellan minimum och maximum. Kungsvik var den station med de största dagliga variationerna, detta på grund av tidvattnets påverkan i området. / This thesis gives examples of different methods of automated adjustment of floatation level for a static moored buoy, an overview of the theories behind water level change and a statistical analysis of the water level changes for Stockholm, Kungsholmsfort and Kungsvik. Depending on the range and frequency of the water level change different methods of adjustment are recommended. For areas with small changes in sea level the best choice would be no adjustment of the floatation level. Areas that are influenced by moderate tidal ranges should incorporate a system of regulation consisting of a winch, gearbox with a gear ratio of around 10,000:1, 12 V DC motor, 12 V maintenance free battery, air coiled linear generator and a strain gauge. For areas with large tidal ranges the previous system should be complimented with a horizontally mounted spring, inside the buoy, to lessen the loads on the motor. The statistical analysis found the largest extremes in water level of the three sites to be at Kungsvik and Kungsholmsfort, both exhibiting a range of almost 1.6 m. Kungsvik was the station with the largest daily variations, this is because this is the only station influenced by tidal variations.
19

Maximum Energy Harvesting Control Foroscillating Energy Harvesting Systems

Elmes, John 01 January 2007 (has links)
This thesis presents an optimal method of designing and controlling an oscillating energy harvesting system. Many new and emerging energy harvesting systems, such as the energy harvesting backpack and ocean wave energy harvesting, capture energy normally expelled through mechanical interactions. Often the nature of the system indicates slow system time constants and unsteady AC voltages. This paper reveals a method for achieving maximum energy harvesting from such sources with fast determination of the optimal operating condition. An energy harvesting backpack, which captures energy from the interaction between the user and the spring decoupled load, is presented in this paper. The new control strategy, maximum energy harvesting control (MEHC), is developed and applied to the energy harvesting backpack system to evaluate the improvement of the MEHC over the basic maximum power point tracking algorithm.
20

Ocean Wave Energy : Underwater Substation System for Wave Energy Converters

Rahm, Magnus January 2010 (has links)
This thesis deals with a system for operation of directly driven offshore wave energy converters. The work that has been carried out includes laboratory testing of a permanent magnet linear generator, wave energy converter mechanical design and offshore testing, and finally design, implementation, and offshore testing of an underwater collector substation. Long-term testing of a single point absorber, which was installed in March 2006, has been performed in real ocean waves in linear and in non-linear damping mode. The two different damping modes were realized by, first, a resistive load, and second, a rectifier with voltage smoothing capacitors and a resistive load in the DC-link. The loads are placed on land about 2 km east of the Lysekil wave energy research site, where the offshore experiments have been conducted. In the spring of 2009, another two wave energy converter prototypes were installed. Records of array operation were taken with two and three devices in the array. With two units, non-linear damping was used, and with three units, linear damping was employed. The point absorbers in the array are connected to the underwater substation, which is based on a 3 m3 pressure vessel standing on the seabed. In the substation, rectification of the frequency and amplitude modulated voltages from the linear generators is made. The DC voltage is smoothened by capacitors and inverted to 50 Hz electrical frequency, transformed and finally transmitted to the on-shore measuring station. Results show that the absorption is heavily dependent on the damping. It has also been shown that by increasing the damping, the standard deviation of electrical power can be reduced. The standard deviation of electrical power is reduced by array operation compared to single unit operation. Ongoing and future work include the construction and installation of a second underwater substation, which will connect the first substation and seven new WECs.

Page generated in 0.0623 seconds