• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 3
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 18
  • 18
  • 10
  • 7
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Biophysical studies of membrane interacting peptides derived from viral and Prion proteins

Oglęcka, Kamila January 2007 (has links)
This thesis focuses on peptides derived from the Prion, Doppel and Influenza haemagglutinin proteins in the context of bilayer interactions with model membranes and live cells. The studies involve spectroscopic techniques like fluorescence, fluorescence correlation spectroscopy (FCS), circular and linear dichroism (CD and LD), confocal fluorescence microscopy and NMR. The peptides derived from the Prion and Doppel proteins combined with their subsequent nuclear localization-like sequences, makes them resemble cell-penetrating peptides (CPPs). mPrPp(1-28), corresponding to the first 28 amino acids of the mouse PrP, was shown to translocate across cell membranes, concomitantly causing cell toxicity. Its bovine counterpart bPrPp(1-30) was demonstrated to enter live cells, with and without cargo, mainly via macropinocytosis. The mPrPp(23-50) peptide sequence overlaps with mPrPp(1-28) sharing the KKRPKP sequence believed to encompass the driving force behind translocation. mPrPp(23-50) was however found unable to cross over cell membranes and had virtually no perturbing effects on membranes. mDplp(1-30), corresponding of the first 30 N-terminal amino acids of the Doppel protein, was demonstrated to be almost as membrane perturbing as melittin. NMR experiments in bicelles implied a transmembrane configuration of its alpha-helix, which was corroborated by LD in vesicle bilayers. The positioning of the induced alpha-helix in transportan was found to be more parallel to the bilayer surface in the same model system. Positioning of the native Influenza derived fusion peptide in bilayers showed no pH dependence. The glutamic acid enriched variant however, changed its insertion angle from 70 deg to a magic angle alignment relative the membrane normal upon a pH drop from 7.4 to 5.0. Concomitantly, the alpha-helical content dramatically rose from 18% to 52% in partly anionic membranes, while the native peptide’s helicity increased only from 39% to 44% in the same conditions.
12

Studium spinové polarizace pomocí laserové spektroskopie / Investigation of spin polarization by laser spectroscopy

Kuchařík, Jiří January 2015 (has links)
Spintronics is a new branch of electronics, which uses not only the charge of electron but also its spin for transfer and processing of information. For re- al applications it is necessary to understand, how the magnetic state of matter changes not only in time but also in space. This diploma thesis is therefore de- voted to the imaging of magnetic domains in ferromagnetic semiconductors by purely optical methods, which are based on the usage of the magneto-optical ef- fects. In first part of the thesis we concentrated on the optimalization of existing polarizing microscope, whose function is based solely on the polar Kerr effect. After the optimalization we try to use this setup to observe magnetic domains in ferromagnetic semiconductor GaMnAs by the means of the magnetic linear dichroism. 1
13

Laserová spektroskopie materiálů pro spintroniku / Laser spectroscopy of materials for spintronics

Brajer, Martin January 2015 (has links)
In these diploma thesis magnetically ordered materials are studied with the prospect of their application in spintronics. Specifically, we investigated metallic alloy FeRh, which undergoes a magnetic phase transition from antife- romagnetic phase to feromagnetic one around 100◦ C. This phenomenon can be readily used in memory devices. Laser spectroscopy is used as a nondestructive method without need of any electrical contacts. Magnetic properties of FeRh are studied by magnetooptical effects including quadratic magnetic linear dichroism. The measured polarization rotations are of the order of miliradians, therefore, the detection is realized by an optical bridge. At first, we concentrated on discrimina- ting of various magnetooptical effects from each other. The second part is focused on the phase transition induced by different means. Firstly, by heating the whole sample, secondly by illuminating the sample locally by continuous laser.
14

X-RAY AND ELECTRON SPECTROMICROSCOPY OF CARBON NANOTUBE SYSTEMS

Najafi, Ebrahim 10 1900 (has links)
<p>This thesis presents studies of the X-ray linear dichroism (XLD) in individual single-walled (SW) and multi-walled (MW) carbon nanotubes (CNT) measured by a scanning transmission X-ray microscope (STXM). The C 1s spectra of CNT showed a large XLD at the C 1s→π* transition. The magnitude of the XLD was found to be related to the quality of CNT such that in high quality CNT, it was fairly large and as the quality lowered it decreased. This dichroic effect was used to map defects along individual CNT. In addition, STXM was employed to map chemical components in pristine, purified, and dodecyl functionalized SWCNT bundles to investigate the changes occurring in them due to chemical functionalization.<br />STXM has limited spatial resolution. Thus, electron energy loss spectroscopy (EELS) in a transmission electron microscope (TEM) was used to obtain similar information about CNT, but at much higher spatial resolution. The measurements performed in the scanning transmission electron microscopy (STEM) mode produced signals analogous to the XLD when the orientation of the momentum transfer (q) was resolved. This was achieved by displacing the pattern of electron scattering from CNT relative to the EELS entrance aperture. TEM-EELS was also utilized to map defects in pristine and focused ion beam (FIB) modified CNT.</p> / Doctor of Philosophy (PhD)
15

Mise en place et application d'un spectromètre de dichroïsme linéaire infrarouge avec modulation de la polarisation pour l'étude de l'orientation des mélanges polymères

Mauran, Damien January 2008 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal.
16

Mise en place et application d'un spectromètre de dichroïsme linéaire infrarouge avec modulation de la polarisation pour l'étude de l'orientation des mélanges polymères

Mauran, Damien January 2008 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
17

Theoretical Investigations Of Core-Level Spectroscopies In Strongly Correlated Systems

Gupta, Subhra Sen 12 1900 (has links)
Ever since the discovery of exotic phenomena like high temperature (Tc) superconductivity in the cuprates and colossal magnetoresistance in the manganites, strongly correlated electron systems have become the center of attention in the field of condensed matter physics research. This renewed interest has been further kindled by the rapid development of sophisticated experimental techniques and tremendous computational power. Computation plays a pivotal role in the theoretical investigation of these systems, because one cannot explain their complicated phase diagrams by simple, exactly solvable models. Among the plethora of experimental techniques, various kinds of high energy electron spectroscopies are fast gaining importance due to the multitude of physical properties and phenomena which they can access. However the physical processes involved and the interpretation of the spectra obtained from these spectroscopies are extremely complex and require extensive theoretical modelling. This thesis is concerned with the theoretical modelling of a certain class of high energy electron spectroscopies, viz. the core-level electron spectroscopies, for strongly correlated systems of various kinds. The spectroscopies covered are Auger electron spectroscopy (AES), core-level photoemission spectroscopy (core-level PES) and X-ray absorption spec- troscopy (XAS), which provide non-magnetic information, and also X-ray magnetic circular and linear dichroism (XMCD and XMLD), which provide magnetic information. .
18

Laserspektroskopie an Photosystem II Zur Proton-Elektron-Kopplung bei Tyrosin Z und über die Natur der Chlorophyll a Entität P680 / Laser flash spectroscopy of photosystem II The proton-electron-coupling around tyrosine Z and the nature of the chlorophyll a entity P680

Ahlbrink, Ralf 12 December 2002 (has links)
"Laser flash spectroscopy of photosystem II" Photosystem II (PS II) of plants and cyanobacteria oxidizes water in a light-powered reaction. Thereby, this protein is the ultimate source of the atmospheric oxygen. The capacity to oxidize water is owed to two properties of PS II: (i) The midpoint potential of the oxidizing chlorophyll moiety is increased by 0.6 V compared to photosystem I or photochemical reaction centers of anoxygenic bacteria, and (ii) the energy requirements of the four steps needed for the tetravalent oxidation of water are adapted to the energy of red light quanta. This thesis deals with two particular aspects, namely: 1. The coupling of the electron transfer from tyrosine Z (YZ) to the primary donor (P680+) to proton transfer, and an inquiry on the role of a positive charge on YZox (plus base cluster) in increasing the oxidizing potential at the catalytic site. 2. The localization of the electron hole, P680+, among the excitonically coupled four inner chlorophyll a molecules, and an estimation of the midpoint potential differences between them. Electron-proton-coupling by YZ This study was carried out with PS II core complexes from spinach or pea with a deactivated (removed) manganese cluster. The reduction of P680+ was investigated as a function of pH by detecting the laser flash induced absorption changes with nanosecond resolution. Two kinetic components were found with different pH-dependence and activation energies. The alteration of kinetic parameters by H/D isotope substitutions or by addition of divalent cations implied two different types of YZ-oxidation: At acidic pH the electron transfer was coupled with proton transfer, whereas in the alkaline region it was more rapid and no longer controlled by proton transfer. The conversion between both mechanisms occured at pH 7.4. This value corresponds either to the apparent pK of YZ itself (i.e. of the hydroxy group of the phenol ring) or to the pK of an acid-base-cluster, which includes YZ. Independent measurements of pH-transients by following the absorption changes of hydrophilic proton indicators corroborated this notion. The data were interpreted as indicating that the phenolic proton of YZ was released into the medium at acidic, but not at alkaline pH. The electron transfer and proton release characteristics of intact, oxygen-evolving PS II resembled those in deactivated samples kept at alkaline pH. We concluded that the electron transfer from YZ to P680+ in the native system was not coupled with proton transfer into the bulk. This has shed doubt on a popular hypothesis on the role of YZ as 'hydrogen abstractor' from bound water. On the other hand, the energetic constraints of water oxidation could be eased by the positive upcharging during oxidation of YZox plus its base cluster. On the localization of the electron hole of P680+ Photooxidation of PS II oxidizes the set of four innermost chlorophyll a molecules giving rise to the only spectroscopically defined species P680+. The deconvolution of difference spectra into bands of pigments is ambiguous. By using photoselective excitation of antennae, i.e. chl a molecules with site specific energies at the long wavelength border of the mean Qy-band, and by polarized detection, it was possible to tag P680+QA-/P680QA and 3P680/P680 difference spectra with a further parameter, the (wavelength-dependent) anisotropy r. Results obtained at liquid nitrogen temperature (77 K) can be clearly interpreted in terms of two chl a monomer bands. The two main components of the P680+QA-/P680QA difference spectrum were marked by two distinct values of the anisotropy and could be interpreted in a straightforward manner: the bleaching of a band at 675 nm belonging to the charged species (chl a+) and an electrochromic blue-shift of a nearby chl a from 684 to 682 nm. The main bleaching band of the 3P680/P680 spectrum (at 77 K) can be apparently attributed to a third (or several) chl a component(s). The analysis of the P680+QA-/P680QA spectrum at cryogenic temperature is compatible with monomeric chl a bands. On the other hand, one could assume a system of excitonically coupled core pigments, as it was recently introduced in the literature on the basis of energy transfer studies ('multimer model'). However, in view of the clear indications for an electrochromic band shift and the location of the bleaching band, which absorbs in a wavelength region of monomeric chl a, one assumption of the 'multimer model' should be questioned. Presumably, the excitonic couplings are rather weak, in particular between each of the two central chl a-molecules (PA/PB) and its respective accessory chl a (BA/BB), because of (i) the distances and (ii) different site energies of the monomeric chromophores. At room temperature, the absorption difference and anisotropy spectra of P680+QA-/P680QA were clearly altered. The anisotropy data indicated that the changes could no longer exclusively be ascribed to thermal broadening of individual bands. The localization of the positive charge on one pigment, analogous to the situation at 77 K, was now unlikely. Hence, the midpoint potential differences between the inner four chlorophyll a molecules were small and were estimated as approximately 15 meV.

Page generated in 0.0603 seconds