• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 1
  • Tagged with
  • 15
  • 15
  • 9
  • 9
  • 7
  • 7
  • 6
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

A linguagem matemática para uso em sites de busca ou em ferramentas para portadores de necessidades especiais

Araujo, Renarte Dantas de 25 February 2015 (has links)
Submitted by Viviane Lima da Cunha (viviane@biblioteca.ufpb.br) on 2015-12-07T12:54:06Z No. of bitstreams: 1 arquivototal.pdf: 1986112 bytes, checksum: 4f03fdfe4b28baad2cf9829f54857dfc (MD5) / Approved for entry into archive by Viviane Lima da Cunha (viviane@biblioteca.ufpb.br) on 2015-12-07T12:54:36Z (GMT) No. of bitstreams: 1 arquivototal.pdf: 1986112 bytes, checksum: 4f03fdfe4b28baad2cf9829f54857dfc (MD5) / Made available in DSpace on 2015-12-07T12:54:36Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 1986112 bytes, checksum: 4f03fdfe4b28baad2cf9829f54857dfc (MD5) Previous issue date: 2015-02-25 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / This paper deals with some peculiarities involving mathematical writing that generate many communication problems through different perspectives. In a time where the Internet is increasingly used and where it is common to see people on the streets carrying tablet computers, smartphones and even laptops, it is unacceptable that there is no simple and common knowledge way to insert a mathematic equation on a web search. Initially we address the interaction between people with special needs, especially those who make use of applications or devices for easy communication, then treat the virtual communication applied to the form of distance education, whether instantaneous or not instantaneous. Following deal about differences between Mathematics written in Portuguese and other languages as well as inconsistencies in mathematical notation observed in Brazil. Then treat the common text input forms used in Information and Communication Technologies to finish with a rough draft agreement that meets the needs exposed at work. / Este trabalho aborda algumas peculiaridades envolvendo a escrita matemática que geram problemas de comunicação diversos através de diferentes perspectivas. Em uma época onde a Internet é cada vez mais usada e na qual é comum ver pessoas nas ruas portando tablets, smartphones e mesmo computadores portáteis, é inaceitável que não exista uma forma simples e de conhecimento comum para se inserir uma equação matemática em um site de busca.Inicialmente abordamos a interação entre portadores de necessidades especiais, principalmente os que façam uso de aplicativos ou dispositivos para facilitar sua comunicação, em seguida tratamos da comunicação virtual aplicada à modalidade de educação à distância, quer seja instantânea ou não instantânea. Na sequência tratamos sobre divergências entre a escrita matemática na língua portuguesa e outras línguas bem como inconsistências na notação matemática observadas no Brasil. Tratamos então das formas de inserção de texto comuns usadas nas Tecnologias da Informação e Comunicação para finalizar com uma proposta rudimentar de convenção que atenda às necessidades expostas durante o trabalho.
12

A linguagem matemática no estudo de números racionais: uma abordagem através da resolução de problemas / The mathematical language in the study of rational numbers: an approach through problem solving

Vallilo, Sabrina Aparecida Martins [UNESP] 26 April 2018 (has links)
Submitted by SABRINA APARECIDA MARTINS VALLILO (sabrina.vallilo@gmail.com) on 2018-06-11T21:45:59Z No. of bitstreams: 1 vallilo_dissertação.pdf: 4136569 bytes, checksum: c51761debdd6819b15d6a8569c6e8daf (MD5) / Approved for entry into archive by Adriana Aparecida Puerta null (dripuerta@rc.unesp.br) on 2018-06-12T17:48:03Z (GMT) No. of bitstreams: 1 vallilo_sam_me_rcla.pdf: 4136569 bytes, checksum: c51761debdd6819b15d6a8569c6e8daf (MD5) / Made available in DSpace on 2018-06-12T17:48:03Z (GMT). No. of bitstreams: 1 vallilo_sam_me_rcla.pdf: 4136569 bytes, checksum: c51761debdd6819b15d6a8569c6e8daf (MD5) Previous issue date: 2018-04-26 / Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) / Esta pesquisa tem como objetivo investigar como que a Linguagem Vernácula e a Linguagem Matemática contribuem no trabalho com números racionais quando se faz uso da Metodologia de Ensino-Aprendizagem-Avaliação de Matemática através da Resolução de Problemas. Esta pesquisa foi desenvolvida seguindo a Metodologia Científica de Romberg-Onuchic apresentada por Onuchic e Noguti (2014). Apresentamos a fundamentação teórica desta pesquisa a partir de três variáveis-chave (Resolução de Problemas, Linguagem Vernácula e Linguagem Matemática, Números Racionais). Procuramos investigar de que forma as Linguagens Vernácula e Matemática contribuem para o trabalho com as diferentes personalidades do número racional visando a aprendizagem e a avaliação do aluno ao se adotar a Metodologia de Resolução de Problemas. Para tanto, estabelecemos como procedimentos da pesquisa a elaboração de um Projeto e sua aplicação em uma turma de 6º ano do Ensino Fundamental de uma escola estadual da rede pública de ensino da cidade de Rio Claro - SP. Esse Projeto envolve o ensino de algumas personalidades do número racional apresentadas por Botta e Onuchic (1997) como ponto racional, fração e quociente. Percebemos que o trabalho do professor de incentivar os alunos a entenderem os significados das palavras presentes nos enunciados dos problemas que envolvem números racionais, possibilita que eles compreendam e escrevam usando da linguagem vernácula para que possam dominar a linguagem matemática corretamente. / This research aims to inquiry how the native language and the mathematical language contribute in the work with rational numbers when we carry out a practice in the Teaching - Learning - Assessment Methodology of Mathematics through Problem Solving. That study was developed with the scientific methodology of research of Romberg - Onuchic as pointed out by Onuchic and Noguti (2014). We came out our theoretical tenants in three variables - key, such that: Problem Solving, native language and mathematical language, an d rational numbers. We had looked for following up from which ways the native language and mathematical language can contribute to the educational work with the different personalities of rational numbers in the use of methodology on Problem Solving. There fore, we had pointed out as research procedures the figuring out of a project and its application at a 6 th grade of the E lementary School in a State Public School of the City of Rio Claro – SP. This project encompasses the teaching of some personalities of the rational numbers, such that: rational point, fractions and quotient presented by Botta and Onuchic (1997). Within that work, we can perceive that the mathematic’s teacher’s work with the practical methodology of Teaching - Learning - Assessment through Pr oblem Solving end up allow ing that actors of that cenary can understand and write finding out the native language to hold upon the mathematical language correctly and properly. / CNPq: 132558/2016-5.
13

Elementos de álgebra que auxiliam nos fundamentos do cálculo / Algebra elements that help in the fundaments of calculus

Freitas, Iron Felisberto de 27 March 2015 (has links)
Submitted by Cláudia Bueno (claudiamoura18@gmail.com) on 2015-10-26T16:12:34Z No. of bitstreams: 2 Dissertação - Iron Felisberto de Freitas - 2015.pdf: 4566285 bytes, checksum: 347da00cced574440e6a02e8b4ddf92f (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2015-10-27T14:35:43Z (GMT) No. of bitstreams: 2 Dissertação - Iron Felisberto de Freitas - 2015.pdf: 4566285 bytes, checksum: 347da00cced574440e6a02e8b4ddf92f (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Made available in DSpace on 2015-10-27T14:35:43Z (GMT). No. of bitstreams: 2 Dissertação - Iron Felisberto de Freitas - 2015.pdf: 4566285 bytes, checksum: 347da00cced574440e6a02e8b4ddf92f (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Previous issue date: 2015-03-27 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / This paper addresses the formal-logical construction of number systems from the set of natural numbers to the real numbers. Being the rst of these sets presented by the axioms of Peano (1858 - 1932) and the latter results of Dedekind cuts (1831 - 1916) on the set of rational numbers. The passage the set of natural numbers to the integers and for these the rational is done by equivalence classes. From a historical perspective, in order to do that mathematics could advance, had to migrate from a sense of \reality" to an abstract concept of number not subject to the amount of idea. Since the beginning of this formal-logical construction of number systems it is necessary to use the concept of correspondences between any two non-empty sets. Finally , are also addressed the polynomial functions of 1st and 2nd degrees and the respective charts in orthogonal Cartesian plane. / O presente trabalho aborda a constru c~ao l ogico-formal dos sistemas num ericos desde, o conjunto dos n umeros naturais at e ao dos n umeros reais. Sendo o primeiro destes conjuntos apresentado pelos axiomas de Peano (1858 - 1932), e o ultimo resulta dos cortes de Dedekind (1831 - 1916) sobre ao conjunto dos n umeros racionais. A passagem do conjunto dos n umeros naturais ao dos inteiros e destes ao dos racionais e realizado por classes de equival^encias. Em uma perspectiva hist orica, a m de que, a Matem atica pudesse avan car, era preciso migrar de uma no c~ao de \realidade" para um conceito abstrato de n umero n~ao subordinado a ideia de quantidade. Desde o in cio desta constru c~ao l ogico-formal dos sistemas num ericos faz-se necess ario o uso do conceito de correspond^encias entre dois conjuntos n~ao vazios quaisquer. Por m, s~ao tamb em abordadas as fun c~oes polinomiais de 1o e 2o graus e seus respectivos gr a cos no plano cartesiano ortogonal.
14

Educação e linguagem : os mecanismos coesivos na compreensão de problemas de aritmética

Lorensatti, Edi Jussara Candido 08 June 2011 (has links)
Como indicam os Parâmetros Curriculares Nacionais, um dos objetivos do Ensino Fundamental no Brasil é o de que os alunos sejam capazes de questionar a realidade formulando problemas e tratando de resolvê-los (PCN, 1998, p. 27). Na mesma perspectiva, um dos propósitos do terceiro ciclo, que corresponde ao sexto ano do Ensino Fundamental, em Matemática, é o de que os alunos sejam capazes de resolver situações-problema envolvendo números naturais, inteiros, racionais e a partir delas ampliar e construir novos significados para as operações aritméticas (op. cit., p. 64). Assim, a Matemática pode dar sua contribuição à formação do cidadão ao proporcionar a construção de estratégias, a comprovação e a justificativa de resultados (op. cit., p. 27) no desenvolvimento da capacidade para resolver problemas, sejam eles dessa ou de qualquer outra área do conhecimento. O ensino de Matemática não tem só a função evidente de propiciar o desenvolvimento de competências referentes ao manuseio das mais diversas habilidades matemáticas, mas deve ter também a preocupação de promover o desenvolvimento de capacidades como comunicação, argumentação e validação de processos (PCN, 1998, p. 56). Essas, por sua vez, necessitam das habilidades de interpretação e expressão escrita e/ou falada. Aprender a resolver problemas matemáticos na escola é deparar-se com um mundo de conceitos que envolvem leitura e compreensão, tanto da língua materna como da linguagem matemática. A resolução de problemas exige compreensão leitora. Para essa compreensão, o aluno precisa de um referencial linguístico e, para expressar os dados em sentenças matemáticas, de um referencial de linguagem matemática, ambos adequados a cada situação-problema a que for exposto. Oferecer ao aprendiz oportunidades de compreensão do enunciado de problemas, por certo o auxiliarão não só a resolvê-los como também a ampliar e aperfeiçoar o estabelecimento de inferências e de conexões lógicas. Há vários estudos sobre as dificuldades em leitura e sobre as dificuldades na resolução de problemas, separadamente, mas poucos aproximam essas duas áreas do conhecimento. O objetivo desta pesquisa é o de verificar como os mecanismos coesivos, presentes em enunciados de problemas de aritmética, podem se constituir fatores intervenientes na compreensão leitora desses enunciados. Pensa-se ser possível, a partir daí, vislumbrar aproximações entre os estudos sobre língua materna e linguagem matemática, no que tange à compreensão de enunciados de problemas aritméticos. Parte-se do pressuposto de que a não compreensão do enunciado de problemas aritméticos compromete a conversão dos dados apresentados em linguagem matemática e, por conseguinte, a resolução desses problemas. / Submitted by Marcelo Teixeira (mvteixeira@ucs.br) on 2014-06-04T17:28:13Z No. of bitstreams: 1 Dissertacao Edi Jussara Candido Lorensatti.pdf: 1009540 bytes, checksum: a7e285134862bc79761c8d5cc583811b (MD5) / Made available in DSpace on 2014-06-04T17:28:13Z (GMT). No. of bitstreams: 1 Dissertacao Edi Jussara Candido Lorensatti.pdf: 1009540 bytes, checksum: a7e285134862bc79761c8d5cc583811b (MD5) / As the Parâmetros Curriculares Nacionais indicate, one of the purposes of Elementary Schools in Brazil is that students should be able to question reality by formulating problems and trying to solve them (PCN, 1998, p. 27). In that same perspective, one of the purposes in Mathematics for the third cycle, which corresponds to the 6th grade in Elementary School, is that students should be able to solve problem-situations involving, natural numbers, whole numbers, and rational numbers and from those situations be able to enhance and build new meanings for arithmetic operations (op. cit., p. 64). Thus, Mathematics can give its contribution to citizens, by providing the construction of strategies, the evidence and justification of results (op. cit., p. 27) towards the development of the capacity of solving problems, whether they belong to this or any other area of knowledge. Teaching Mathematics does not only have the obvious function of providing the development of competences related to handling with the most varied mathematical abilities, but it must also be concerned with the promotion of the development of abilities such as communication, argumentation, and process validation (PCN, 1998, p. 56). These abilities, on their turn, require abilities of written and/or spoken expression and interpretation. Learning to solve mathematical problems at school means facing a world of concepts that involves reading and comprehension both of one‟s native language and of mathematical language. Solving problems requires reading comprehension. For that comprehension, students need to have some linguistic references and to express data in mathematical sentences they need to have some mathematical references, which should be appropriate according to each problem-situation they are exposed to. Offering learners opportunities to understand the problem utterances should certainly help them not only solve the problems but also to widen and improve their ability to establish inferences and logical connections. Many studies have been carried out about reading and about difficulties in solving problems, although very few have put these two areas of knowledge together. The purpose of this study is to verify how cohesive mechanisms, which are present in the utterances of arithmetic problems, can become intervenient factors in the reading comprehension of those utterances. The author believes it is possible from that point of view to catch a glimpse of ways of making studies of native language get closer to studies of mathematical language in what concerns the comprehension of arithmetical problem utterances. The study starts from the assumption that if the arithmetic utterance is not understood, that compromises the conversion of the data presented in mathematical language and, hence, compromises solving those problems.
15

Educação e linguagem : os mecanismos coesivos na compreensão de problemas de aritmética

Lorensatti, Edi Jussara Candido 08 June 2011 (has links)
Como indicam os Parâmetros Curriculares Nacionais, um dos objetivos do Ensino Fundamental no Brasil é o de que os alunos sejam capazes de questionar a realidade formulando problemas e tratando de resolvê-los (PCN, 1998, p. 27). Na mesma perspectiva, um dos propósitos do terceiro ciclo, que corresponde ao sexto ano do Ensino Fundamental, em Matemática, é o de que os alunos sejam capazes de resolver situações-problema envolvendo números naturais, inteiros, racionais e a partir delas ampliar e construir novos significados para as operações aritméticas (op. cit., p. 64). Assim, a Matemática pode dar sua contribuição à formação do cidadão ao proporcionar a construção de estratégias, a comprovação e a justificativa de resultados (op. cit., p. 27) no desenvolvimento da capacidade para resolver problemas, sejam eles dessa ou de qualquer outra área do conhecimento. O ensino de Matemática não tem só a função evidente de propiciar o desenvolvimento de competências referentes ao manuseio das mais diversas habilidades matemáticas, mas deve ter também a preocupação de promover o desenvolvimento de capacidades como comunicação, argumentação e validação de processos (PCN, 1998, p. 56). Essas, por sua vez, necessitam das habilidades de interpretação e expressão escrita e/ou falada. Aprender a resolver problemas matemáticos na escola é deparar-se com um mundo de conceitos que envolvem leitura e compreensão, tanto da língua materna como da linguagem matemática. A resolução de problemas exige compreensão leitora. Para essa compreensão, o aluno precisa de um referencial linguístico e, para expressar os dados em sentenças matemáticas, de um referencial de linguagem matemática, ambos adequados a cada situação-problema a que for exposto. Oferecer ao aprendiz oportunidades de compreensão do enunciado de problemas, por certo o auxiliarão não só a resolvê-los como também a ampliar e aperfeiçoar o estabelecimento de inferências e de conexões lógicas. Há vários estudos sobre as dificuldades em leitura e sobre as dificuldades na resolução de problemas, separadamente, mas poucos aproximam essas duas áreas do conhecimento. O objetivo desta pesquisa é o de verificar como os mecanismos coesivos, presentes em enunciados de problemas de aritmética, podem se constituir fatores intervenientes na compreensão leitora desses enunciados. Pensa-se ser possível, a partir daí, vislumbrar aproximações entre os estudos sobre língua materna e linguagem matemática, no que tange à compreensão de enunciados de problemas aritméticos. Parte-se do pressuposto de que a não compreensão do enunciado de problemas aritméticos compromete a conversão dos dados apresentados em linguagem matemática e, por conseguinte, a resolução desses problemas. / As the Parâmetros Curriculares Nacionais indicate, one of the purposes of Elementary Schools in Brazil is that students should be able to question reality by formulating problems and trying to solve them (PCN, 1998, p. 27). In that same perspective, one of the purposes in Mathematics for the third cycle, which corresponds to the 6th grade in Elementary School, is that students should be able to solve problem-situations involving, natural numbers, whole numbers, and rational numbers and from those situations be able to enhance and build new meanings for arithmetic operations (op. cit., p. 64). Thus, Mathematics can give its contribution to citizens, by providing the construction of strategies, the evidence and justification of results (op. cit., p. 27) towards the development of the capacity of solving problems, whether they belong to this or any other area of knowledge. Teaching Mathematics does not only have the obvious function of providing the development of competences related to handling with the most varied mathematical abilities, but it must also be concerned with the promotion of the development of abilities such as communication, argumentation, and process validation (PCN, 1998, p. 56). These abilities, on their turn, require abilities of written and/or spoken expression and interpretation. Learning to solve mathematical problems at school means facing a world of concepts that involves reading and comprehension both of one‟s native language and of mathematical language. Solving problems requires reading comprehension. For that comprehension, students need to have some linguistic references and to express data in mathematical sentences they need to have some mathematical references, which should be appropriate according to each problem-situation they are exposed to. Offering learners opportunities to understand the problem utterances should certainly help them not only solve the problems but also to widen and improve their ability to establish inferences and logical connections. Many studies have been carried out about reading and about difficulties in solving problems, although very few have put these two areas of knowledge together. The purpose of this study is to verify how cohesive mechanisms, which are present in the utterances of arithmetic problems, can become intervenient factors in the reading comprehension of those utterances. The author believes it is possible from that point of view to catch a glimpse of ways of making studies of native language get closer to studies of mathematical language in what concerns the comprehension of arithmetical problem utterances. The study starts from the assumption that if the arithmetic utterance is not understood, that compromises the conversion of the data presented in mathematical language and, hence, compromises solving those problems.

Page generated in 0.0931 seconds