• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 3
  • 1
  • 1
  • Tagged with
  • 9
  • 9
  • 5
  • 5
  • 5
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Automatic generation of simple (statistical) exams

Grün, Bettina, Zeileis, Achim January 2008 (has links) (PDF)
Package exams provides a framework for automatic generation of simple (statistical) exams. To employ the tools, users just need to supply a pool of exercises and a master file controlling the layout of the final PDF document. The exercises are specified in separate Sweave files (containing R code for data generation and LaTeX code for problem and solution description) and the master file is a LaTeX document with some additional control commands. This paper gives an overview on the main design aims and principles as well as strategies for adaptation and extension. Hands-on illustrations - based on example exercises and control files provided in the package - are presented to get new users started easily. (author´s abstract) / Series: Research Report Series / Department of Statistics and Mathematics
2

Automatic Generation of Exams in R

Grün, Bettina, Zeileis, Achim 23 February 2009 (has links) (PDF)
Package exams provides a framework for automatic generation of standardized statistical exams which is especially useful for large-scale exams. To employ the tools, users just need to supply a pool of exercises and a master file controlling the layout of the final PDF document. The exercises are specified in separate Sweave files (containing R code for data generation and LaTeX code for problem and solution description) and the master file is a LaTeX document with some additional control commands. This paper gives an overview of the main design aims and principles as well as strategies for adaptation and extension. Hands-on illustrations - based on example exercises and control files provided in the package - are presented to get new users started easily.
3

Educação e linguagem : os mecanismos coesivos na compreensão de problemas de aritmética

Lorensatti, Edi Jussara Candido 08 June 2011 (has links)
Como indicam os Parâmetros Curriculares Nacionais, um dos objetivos do Ensino Fundamental no Brasil é o de que os alunos sejam capazes de questionar a realidade formulando problemas e tratando de resolvê-los (PCN, 1998, p. 27). Na mesma perspectiva, um dos propósitos do terceiro ciclo, que corresponde ao sexto ano do Ensino Fundamental, em Matemática, é o de que os alunos sejam capazes de resolver situações-problema envolvendo números naturais, inteiros, racionais e a partir delas ampliar e construir novos significados para as operações aritméticas (op. cit., p. 64). Assim, a Matemática pode dar sua contribuição à formação do cidadão ao proporcionar a construção de estratégias, a comprovação e a justificativa de resultados (op. cit., p. 27) no desenvolvimento da capacidade para resolver problemas, sejam eles dessa ou de qualquer outra área do conhecimento. O ensino de Matemática não tem só a função evidente de propiciar o desenvolvimento de competências referentes ao manuseio das mais diversas habilidades matemáticas, mas deve ter também a preocupação de promover o desenvolvimento de capacidades como comunicação, argumentação e validação de processos (PCN, 1998, p. 56). Essas, por sua vez, necessitam das habilidades de interpretação e expressão escrita e/ou falada. Aprender a resolver problemas matemáticos na escola é deparar-se com um mundo de conceitos que envolvem leitura e compreensão, tanto da língua materna como da linguagem matemática. A resolução de problemas exige compreensão leitora. Para essa compreensão, o aluno precisa de um referencial linguístico e, para expressar os dados em sentenças matemáticas, de um referencial de linguagem matemática, ambos adequados a cada situação-problema a que for exposto. Oferecer ao aprendiz oportunidades de compreensão do enunciado de problemas, por certo o auxiliarão não só a resolvê-los como também a ampliar e aperfeiçoar o estabelecimento de inferências e de conexões lógicas. Há vários estudos sobre as dificuldades em leitura e sobre as dificuldades na resolução de problemas, separadamente, mas poucos aproximam essas duas áreas do conhecimento. O objetivo desta pesquisa é o de verificar como os mecanismos coesivos, presentes em enunciados de problemas de aritmética, podem se constituir fatores intervenientes na compreensão leitora desses enunciados. Pensa-se ser possível, a partir daí, vislumbrar aproximações entre os estudos sobre língua materna e linguagem matemática, no que tange à compreensão de enunciados de problemas aritméticos. Parte-se do pressuposto de que a não compreensão do enunciado de problemas aritméticos compromete a conversão dos dados apresentados em linguagem matemática e, por conseguinte, a resolução desses problemas. / Submitted by Marcelo Teixeira (mvteixeira@ucs.br) on 2014-06-04T17:28:13Z No. of bitstreams: 1 Dissertacao Edi Jussara Candido Lorensatti.pdf: 1009540 bytes, checksum: a7e285134862bc79761c8d5cc583811b (MD5) / Made available in DSpace on 2014-06-04T17:28:13Z (GMT). No. of bitstreams: 1 Dissertacao Edi Jussara Candido Lorensatti.pdf: 1009540 bytes, checksum: a7e285134862bc79761c8d5cc583811b (MD5) / As the Parâmetros Curriculares Nacionais indicate, one of the purposes of Elementary Schools in Brazil is that students should be able to question reality by formulating problems and trying to solve them (PCN, 1998, p. 27). In that same perspective, one of the purposes in Mathematics for the third cycle, which corresponds to the 6th grade in Elementary School, is that students should be able to solve problem-situations involving, natural numbers, whole numbers, and rational numbers and from those situations be able to enhance and build new meanings for arithmetic operations (op. cit., p. 64). Thus, Mathematics can give its contribution to citizens, by providing the construction of strategies, the evidence and justification of results (op. cit., p. 27) towards the development of the capacity of solving problems, whether they belong to this or any other area of knowledge. Teaching Mathematics does not only have the obvious function of providing the development of competences related to handling with the most varied mathematical abilities, but it must also be concerned with the promotion of the development of abilities such as communication, argumentation, and process validation (PCN, 1998, p. 56). These abilities, on their turn, require abilities of written and/or spoken expression and interpretation. Learning to solve mathematical problems at school means facing a world of concepts that involves reading and comprehension both of one‟s native language and of mathematical language. Solving problems requires reading comprehension. For that comprehension, students need to have some linguistic references and to express data in mathematical sentences they need to have some mathematical references, which should be appropriate according to each problem-situation they are exposed to. Offering learners opportunities to understand the problem utterances should certainly help them not only solve the problems but also to widen and improve their ability to establish inferences and logical connections. Many studies have been carried out about reading and about difficulties in solving problems, although very few have put these two areas of knowledge together. The purpose of this study is to verify how cohesive mechanisms, which are present in the utterances of arithmetic problems, can become intervenient factors in the reading comprehension of those utterances. The author believes it is possible from that point of view to catch a glimpse of ways of making studies of native language get closer to studies of mathematical language in what concerns the comprehension of arithmetical problem utterances. The study starts from the assumption that if the arithmetic utterance is not understood, that compromises the conversion of the data presented in mathematical language and, hence, compromises solving those problems.
4

Educação e linguagem : os mecanismos coesivos na compreensão de problemas de aritmética

Lorensatti, Edi Jussara Candido 08 June 2011 (has links)
Como indicam os Parâmetros Curriculares Nacionais, um dos objetivos do Ensino Fundamental no Brasil é o de que os alunos sejam capazes de questionar a realidade formulando problemas e tratando de resolvê-los (PCN, 1998, p. 27). Na mesma perspectiva, um dos propósitos do terceiro ciclo, que corresponde ao sexto ano do Ensino Fundamental, em Matemática, é o de que os alunos sejam capazes de resolver situações-problema envolvendo números naturais, inteiros, racionais e a partir delas ampliar e construir novos significados para as operações aritméticas (op. cit., p. 64). Assim, a Matemática pode dar sua contribuição à formação do cidadão ao proporcionar a construção de estratégias, a comprovação e a justificativa de resultados (op. cit., p. 27) no desenvolvimento da capacidade para resolver problemas, sejam eles dessa ou de qualquer outra área do conhecimento. O ensino de Matemática não tem só a função evidente de propiciar o desenvolvimento de competências referentes ao manuseio das mais diversas habilidades matemáticas, mas deve ter também a preocupação de promover o desenvolvimento de capacidades como comunicação, argumentação e validação de processos (PCN, 1998, p. 56). Essas, por sua vez, necessitam das habilidades de interpretação e expressão escrita e/ou falada. Aprender a resolver problemas matemáticos na escola é deparar-se com um mundo de conceitos que envolvem leitura e compreensão, tanto da língua materna como da linguagem matemática. A resolução de problemas exige compreensão leitora. Para essa compreensão, o aluno precisa de um referencial linguístico e, para expressar os dados em sentenças matemáticas, de um referencial de linguagem matemática, ambos adequados a cada situação-problema a que for exposto. Oferecer ao aprendiz oportunidades de compreensão do enunciado de problemas, por certo o auxiliarão não só a resolvê-los como também a ampliar e aperfeiçoar o estabelecimento de inferências e de conexões lógicas. Há vários estudos sobre as dificuldades em leitura e sobre as dificuldades na resolução de problemas, separadamente, mas poucos aproximam essas duas áreas do conhecimento. O objetivo desta pesquisa é o de verificar como os mecanismos coesivos, presentes em enunciados de problemas de aritmética, podem se constituir fatores intervenientes na compreensão leitora desses enunciados. Pensa-se ser possível, a partir daí, vislumbrar aproximações entre os estudos sobre língua materna e linguagem matemática, no que tange à compreensão de enunciados de problemas aritméticos. Parte-se do pressuposto de que a não compreensão do enunciado de problemas aritméticos compromete a conversão dos dados apresentados em linguagem matemática e, por conseguinte, a resolução desses problemas. / As the Parâmetros Curriculares Nacionais indicate, one of the purposes of Elementary Schools in Brazil is that students should be able to question reality by formulating problems and trying to solve them (PCN, 1998, p. 27). In that same perspective, one of the purposes in Mathematics for the third cycle, which corresponds to the 6th grade in Elementary School, is that students should be able to solve problem-situations involving, natural numbers, whole numbers, and rational numbers and from those situations be able to enhance and build new meanings for arithmetic operations (op. cit., p. 64). Thus, Mathematics can give its contribution to citizens, by providing the construction of strategies, the evidence and justification of results (op. cit., p. 27) towards the development of the capacity of solving problems, whether they belong to this or any other area of knowledge. Teaching Mathematics does not only have the obvious function of providing the development of competences related to handling with the most varied mathematical abilities, but it must also be concerned with the promotion of the development of abilities such as communication, argumentation, and process validation (PCN, 1998, p. 56). These abilities, on their turn, require abilities of written and/or spoken expression and interpretation. Learning to solve mathematical problems at school means facing a world of concepts that involves reading and comprehension both of one‟s native language and of mathematical language. Solving problems requires reading comprehension. For that comprehension, students need to have some linguistic references and to express data in mathematical sentences they need to have some mathematical references, which should be appropriate according to each problem-situation they are exposed to. Offering learners opportunities to understand the problem utterances should certainly help them not only solve the problems but also to widen and improve their ability to establish inferences and logical connections. Many studies have been carried out about reading and about difficulties in solving problems, although very few have put these two areas of knowledge together. The purpose of this study is to verify how cohesive mechanisms, which are present in the utterances of arithmetic problems, can become intervenient factors in the reading comprehension of those utterances. The author believes it is possible from that point of view to catch a glimpse of ways of making studies of native language get closer to studies of mathematical language in what concerns the comprehension of arithmetical problem utterances. The study starts from the assumption that if the arithmetic utterance is not understood, that compromises the conversion of the data presented in mathematical language and, hence, compromises solving those problems.
5

Habilidades metacognitivas em matemática: desenvolvimento por meio de problemas aritméticos verbais com história no ambiente lúdico de aprendizagem de realidade suplementar / Metacognitive skills in mathematics: development through verbal arithmetic problems with history in a playful learning environment of surplus reality

Pupin, Roselaine Cristina 16 December 2009 (has links)
A presente pesquisa se situa no contexto das investigações que buscam contribuir para o ensino de matemática nas séries iniciais da escolaridade. As investigações nesta área sugerem que as habilidades metacognitivas do indivíduo devam se tornar o foco da instrução em sala de aula. A literatura sobre educação matemática destaca as atividades de resolução de problemas como especialmente significativas para a investigação dos processos metacognitivos do aluno. Além disto, o tema problemas aritméticos verbais com história tem gerado numerosos artigos e livros que analisam as diversas categorias de problemas existentes, entre eles os problemas de adição/subtração e de multiplicação/divisão. Assim, o presente trabalho se propõe a investigar a eficácia de procedimento de desenvolvimento de habilidades metacognitivas em matemática, utilizando-se de problemas aritméticos verbais com história em um ambiente lúdico de aprendizagem. A amostra foi composta com 100 alunos de três turmas de segunda série do Ensino Fundamental. Todos os alunos foram avaliados por meio da Prova de Problemas Aritméticos Verbais com História (de adição, subtração, multiplicação e divisão) e o Subteste de Aritmética do Teste de Desempenho Escolar TDE. A partir dos resultados obtidos nestas duas avaliações, cada classe foi dividida em duas metades, a primeira, com resultados superiores à mediana, compôs o grupo de controle superior, e a segunda, com resultados inferiores à mediana, foi novamente subdividida, sendo que, um quarto compôs o grupo de controle inferior e o outro quarto, o grupo de intervenção. Este grupo recebeu o treinamento em habilidades metacognitivas em matemática em um ambiente lúdico de aprendizagem, ao longo do segundo semestre letivo, num total de 11 sessões, enquanto os outros dois grupos de controle participaram de atividades placebo. No final de cada semestre letivo, todos os alunos foram novamente avaliados, como no seu início. A análise estatística dos resultados obtidos no TDE e na Prova de Problemas Aritméticos revelou diferença significativa nas duas avaliações apenas para os alunos do Grupo de Intervenção. Para os dois Grupos de Controle, a diferença foi significativa somente no TDE. Assim, foi possível concluir que o treinamento realizado com o Grupo de Intervenção foi eficaz no sentido de promover uma melhoria nas habilidades metacognitivas em matemática. / This research situates within the context of investigations that seek to contribute to the teaching of mathematics in the early grades of schooling. Investigations in this area suggest that the metacognitive skills of the individual should become the focus of instruction in the classroom. The literature on mathematics education highlights the activities of problem solving as particularly significant for the investigation of the metacognitive processes of the student. Moreover, the theme of \"verbal arithmetic problems with history\" has generated numerous articles and books about the different categories of problems, including the problems of addition / subtraction and multiplication / division. The present study aims to investigate the effectiveness of the procedure of developing metacognitive skills in mathematics, using the \"verbal arithmetic problems with the story\" in a playful learning environment. The sample is composed of 100 students from three classes of second grade of elementary school. All students were assessed using the Test of Verbal Arithmetic Problems with History (addition, subtraction, multiplication and division) and the arithmetic subtest of the Test of Educational Achievement - TDE. From the results obtained in these two evaluations, each class was divided into two halves, the first are better than the median, composed the Control Higher Group, and second, with results below the median was again divided, with one quarter composed the Control Lower Group and the other fourth the Intervention Group. This group received training in metacognitive skills in mathematics in a playful learning environment, during the second semester, a total of eleven sessions, while the other two control groups participated in activities placebo. At the end of each semester all students were re-evaluated, as in the beginning. Statistical analysis of results obtained in the TDE and Problem Arithmetic Test revealed significant differences in the two ratings for the students in the intervention group. For the two control groups, the difference was significant only in the TDE. Thus, we concluded that the training carried out with the group intervention was effective in promoting an improvement in metacognitive skills in mathematics.
6

Επιδόσεις κωφών & βαρήκοων μαθητών πέμπτης και έκτης τάξης δημοτικού σχολείου σε αριθμητικά προβλήματα / 5th and 6th elementary school grades deaf students' performance in arithmetic problems

Ξερουδάκης, Ανδρέας 09 October 2009 (has links)
Σκοπός της εργασίας αυτής είναι η μελέτη της επίδοσης κωφών μαθητών σε διάφορα είδη αριθμητικών προβλημάτων. Συγκεκριμένα, η μελέτη των επιδόσεων κωφών μαθητών σε αριθμητικά προβλήματα προσθετικού τύπου σε σχέση με την τάξη που παρακολουθούν, το είδος του προβλήματος, καθώς και η επίδραση της χρήσης Ελληνικής Νοηματικής Γλώσσας στη κατανόηση των προβλημάτων. Τα ερωτήματα στα οποία γίνετε μια προσπάθεια να απαντηθούν είναι: (1) σε ποιό βαθμό η χρήση Ελληνικής Νοηματικής Γλώσσας κατά την εκφώνηση του αριθμητικού προβλήματος διευκολύνει την κατανόηση του και επομένως συμβάλει θετικά στην επίλυση του, (2) σε ποιο βαθμό η επίδοση των μαθητών στα ίδια αριθμητικά προβλήματα διαφοροποιείται ανάλογα με την τάξη, την οποία παρακολουθούν, και την ηλικία τους και (3) εάν το είδος του αριθμητικού προβλήματος σχετίζεται με τη φοίτηση των μαθητών π.χ. εάν κάποια προβλήματα γίνονται κατανοητά σε παιδιά μεγαλύτερης τάξης. Στην έρευνα πήραν μέρος επτά μαθητές (Ν=7) από τα Ειδικά Δημοτικά Σχολεία Κωφών και Βαρηκόων Αργυρούπολης και Πάτρας και 30 μαθητές (Ν=30) από το Δημοτικό Σχολείο Γαλατά Τροιζήνας, οι οποίοι αποτέλεσαν την ομάδα ελέγχου. Τα αποτελέσματα έδειξαν ότι οι κωφοί και οι βαρήκοοι μαθητές παρουσιάζουν χαμηλότερες επιδόσεις στην επίλυση αριθμητικών προβλημάτων τύπου από αυτές των ακουόντων μαθητών ίδιας ηλικίας, ανεξαρτήτως τρόπου επικοινωνίας. Συγκεκριμένα, οι επιδόσεις τους στην περίπτωση που γίνετε χρήση Ε.Ν.Γ. κατά την εκφώνηση των παραπάνω προβλημάτων, παρουσιάζονται αρκετά βελτιωμένες από την περίπτωση της χρήσης γραπτού λόγου. Επιπλέον, οι επιδόσεις των κωφών και βαρήκοων μαθητών της έκτης τάξης, και με τους δύο τρόπους επικοινωνίας, είναι καλύτερες από αυτές των μαθητών της πέμπτης τάξης. Όσον αφορά τις επιδόσεις των κωφών μαθητών στα διάφορα είδη αριθμητικών προβλημάτων, φαίνεται να έχουν καλύτερη επίδοση από όλους στα προβλήματα αυτά, στα οποία δίνονται όλες οι αρχικές ποσότητες και ζητείται η τελική, όπως και σε αυτά που οι λέξεις που χρησιμοποιούνται είναι συνεπείς με τις πράξεις που απαιτούνται για την επίλυση τους. Οι μαθητές της έκτης τάξης παρουσιάζουν καλύτερη επίδοση σε όλα τα υπόλοιπα προβλήματα. Τέλος, τα παραπάνω αποτελέσματα πρέπει να ληφθούν σοβαρά υπόψη από τους δασκάλους και τους μαθηματικούς, ώστε να βελτιώσουν τη διδασκαλία τους με το να χρησιμοποιούν Ελληνική Νοηματική Γλώσσα για να κατανοούν οι μαθητές πλήρως τις διάφορες έννοιες και τη μαθηματική γλώσσα. Επίσης θα πρέπει να βελτιωθεί η αναγνωστική ικανότητα των κωφών γενικότερα ώστε να μπορούν να κατανοούν τα αριθμητικά προβλήματα και να δοθεί περισσότερος χρόνος στη διδασκαλία των μαθηματικών. / The purpose of this assignment was a first study of deaf students' performance in different types of arithmetic problems. Specifically, the study of deaf students' performance on arithmetic problems to comparison with the class monitor, the type of the problem, and the influence of Greek Sign Language use in understanding of these problems. To analyze this, there was an attempt to answer the following questions: (1) to what extent the use of Greek Sign Language in the pronunciation of arithmetic problem makes them easier for understanding and thus contribute positively to their being answered, (2) to what extent the performance of students at the same arithmetic problems varies according to the order, which follow, and their age and (3) whether the type of arithmetic problem associates with the attendance of students, e.g. if some types of problems are more understandable to older children. Seven students (N = 7) of the Special Primary Schools for Deaf and Hard of Hearing of Argyroupolis and Patras participated in this study as well as 30 students (N = 30) of the Elementary School of Galatas Trizoinias, which served as the control group. The results of the study showed that deaf and hard of hearing students are less efficient in solving arithmetic problems than their hearing piers, regardless of the method of communication. Specifically, their performance, when using G.S.L., are presented quite improved than the use of case writing. Moreover, the performance of sixth grade deaf and hard of hearing students, with both modes of communication are better than those of students of fifth grade. Regarding the performance of deaf students in different types of arithmetic problems they seem to have better performance when all the original amounts are given and the final is been asked. Also when the words used in the problems are consistent with the acts required to solve them. The students of sixth grade are better in the problems. Finally, these results should be taken seriously by teachers and mathematicians to improve their teaching, by using Greek Sign Language, so as their students to understand fully the various mathematical concepts and language. Also they should try to improve the reading ability of deaf students in general so that they can understand the arithmetic problems and also give more time to the teaching of mathematics.
7

Habilidades metacognitivas em matemática: desenvolvimento por meio de problemas aritméticos verbais com história no ambiente lúdico de aprendizagem de realidade suplementar / Metacognitive skills in mathematics: development through verbal arithmetic problems with history in a playful learning environment of surplus reality

Roselaine Cristina Pupin 16 December 2009 (has links)
A presente pesquisa se situa no contexto das investigações que buscam contribuir para o ensino de matemática nas séries iniciais da escolaridade. As investigações nesta área sugerem que as habilidades metacognitivas do indivíduo devam se tornar o foco da instrução em sala de aula. A literatura sobre educação matemática destaca as atividades de resolução de problemas como especialmente significativas para a investigação dos processos metacognitivos do aluno. Além disto, o tema problemas aritméticos verbais com história tem gerado numerosos artigos e livros que analisam as diversas categorias de problemas existentes, entre eles os problemas de adição/subtração e de multiplicação/divisão. Assim, o presente trabalho se propõe a investigar a eficácia de procedimento de desenvolvimento de habilidades metacognitivas em matemática, utilizando-se de problemas aritméticos verbais com história em um ambiente lúdico de aprendizagem. A amostra foi composta com 100 alunos de três turmas de segunda série do Ensino Fundamental. Todos os alunos foram avaliados por meio da Prova de Problemas Aritméticos Verbais com História (de adição, subtração, multiplicação e divisão) e o Subteste de Aritmética do Teste de Desempenho Escolar TDE. A partir dos resultados obtidos nestas duas avaliações, cada classe foi dividida em duas metades, a primeira, com resultados superiores à mediana, compôs o grupo de controle superior, e a segunda, com resultados inferiores à mediana, foi novamente subdividida, sendo que, um quarto compôs o grupo de controle inferior e o outro quarto, o grupo de intervenção. Este grupo recebeu o treinamento em habilidades metacognitivas em matemática em um ambiente lúdico de aprendizagem, ao longo do segundo semestre letivo, num total de 11 sessões, enquanto os outros dois grupos de controle participaram de atividades placebo. No final de cada semestre letivo, todos os alunos foram novamente avaliados, como no seu início. A análise estatística dos resultados obtidos no TDE e na Prova de Problemas Aritméticos revelou diferença significativa nas duas avaliações apenas para os alunos do Grupo de Intervenção. Para os dois Grupos de Controle, a diferença foi significativa somente no TDE. Assim, foi possível concluir que o treinamento realizado com o Grupo de Intervenção foi eficaz no sentido de promover uma melhoria nas habilidades metacognitivas em matemática. / This research situates within the context of investigations that seek to contribute to the teaching of mathematics in the early grades of schooling. Investigations in this area suggest that the metacognitive skills of the individual should become the focus of instruction in the classroom. The literature on mathematics education highlights the activities of problem solving as particularly significant for the investigation of the metacognitive processes of the student. Moreover, the theme of \"verbal arithmetic problems with history\" has generated numerous articles and books about the different categories of problems, including the problems of addition / subtraction and multiplication / division. The present study aims to investigate the effectiveness of the procedure of developing metacognitive skills in mathematics, using the \"verbal arithmetic problems with the story\" in a playful learning environment. The sample is composed of 100 students from three classes of second grade of elementary school. All students were assessed using the Test of Verbal Arithmetic Problems with History (addition, subtraction, multiplication and division) and the arithmetic subtest of the Test of Educational Achievement - TDE. From the results obtained in these two evaluations, each class was divided into two halves, the first are better than the median, composed the Control Higher Group, and second, with results below the median was again divided, with one quarter composed the Control Lower Group and the other fourth the Intervention Group. This group received training in metacognitive skills in mathematics in a playful learning environment, during the second semester, a total of eleven sessions, while the other two control groups participated in activities placebo. At the end of each semester all students were re-evaluated, as in the beginning. Statistical analysis of results obtained in the TDE and Problem Arithmetic Test revealed significant differences in the two ratings for the students in the intervention group. For the two control groups, the difference was significant only in the TDE. Thus, we concluded that the training carried out with the group intervention was effective in promoting an improvement in metacognitive skills in mathematics.
8

Conocimiento especializado del profesor de matemática en la enseñanza - aprendizaje de los problemas aritméticos de enunciado verbal (PAEV) / Mathematics Teacher Specialized Knowledge - learning Verbal Arithmetic Problems (PAEV)

Franco Miranda, Nayla Allisson, Benavides Caruajulca, Katerin Marilu 09 July 2020 (has links)
Solicitud de embargo por publicación en revista indexada. / Los problemas aritméticos de enunciado verbal constituyen una parte fundamental del área de Matemáticas, ya que su enseñanza y resolución son una de las grandes dificultades que enfrentan los profesores y estudiantes. En este trabajo desde un enfoque cualitativo se realizará un análisis didáctico respecto al Conocimiento especializado del profesor de Matemáticas (MTSK) sobre los problemas aritméticos de enunciado verbal (PAEV). / Verbal arithmetic problems are established as one of the essential parts of the Area of Math, since their teaching and resolution are one of the great difficulties faced by teachers and students. In this work, from a qualitative perspective, a didactic analysis will be carried out with respect to the Mathematics Teacher Specialized Knowledge (MTSK) on the arithmetic problems of verbal statement (PAEV). / Trabajo de investigación
9

Geometry of universal torsors / Geometrie universeller Torsore

Derenthal, Ulrich 13 October 2006 (has links)
No description available.

Page generated in 0.0721 seconds