Spelling suggestions: "subject:"lipschitz continuous"" "subject:"lifschitz continuous""
1 |
Multifractal Analysis of Parabolic Rational MapsByrne, Jesse William 08 1900 (has links)
The investigation of the multifractal spectrum of the equilibrium measure for
a parabolic rational map with a Lipschitz continuous potential, φ, which satisfies
sup φ < P(φ)
x∈J(T)
is conducted. More specifically, the multifractal spectrum or spectrum of singularities, f(α) is studied.
|
2 |
Tópicos em métodos ótimos para otimização convexa / Topics in optimal methods for convex optimizationRossetto, Diane Rizzotto 29 March 2012 (has links)
Neste trabalho apresentamos um novo método ótimo para otimização de uma função convexa diferenciável sujeita a restrições convexas. Nosso método é baseado em ideias de Nesterov e Auslender e Teboulle. A proposta dos últimos autores usa uma distância de Bregman coerciva para garantir que os iterados permaneçam no interior do conjunto viável. Nosso método estende esses resultados para permitir o emprego da distância Euclidiana ao quadrado. Mostramos também como estimar a constante de Lipschitz para o gradiente da função objetivo, o que resulta em uma melhora na eficiência numérica do método. Finalmente, apresentamos experimentos numéricos para validar nossa proposta e comparar com o algoritmo de Nesterov. / In this work we introduce a new optimal method for constrained differentiable convex optimization which is based on previous ideas by Nesterov and Auslender and Teboulle. The method proposed by the last authors use a coercive Bregman distance to ensure that the iterates remain in the interior of the feasible set. Our results extend this method to allow the use of the squared Euclidean distance. We also show how to estimate the Lipschitz constant of the gradient of the objective function, improving the numerical behavior of the method. Finally, we present numerical experiments to validate our approach and compare it to Nesterov\'s algorithm.
|
3 |
Tópicos em métodos ótimos para otimização convexa / Topics in optimal methods for convex optimizationDiane Rizzotto Rossetto 29 March 2012 (has links)
Neste trabalho apresentamos um novo método ótimo para otimização de uma função convexa diferenciável sujeita a restrições convexas. Nosso método é baseado em ideias de Nesterov e Auslender e Teboulle. A proposta dos últimos autores usa uma distância de Bregman coerciva para garantir que os iterados permaneçam no interior do conjunto viável. Nosso método estende esses resultados para permitir o emprego da distância Euclidiana ao quadrado. Mostramos também como estimar a constante de Lipschitz para o gradiente da função objetivo, o que resulta em uma melhora na eficiência numérica do método. Finalmente, apresentamos experimentos numéricos para validar nossa proposta e comparar com o algoritmo de Nesterov. / In this work we introduce a new optimal method for constrained differentiable convex optimization which is based on previous ideas by Nesterov and Auslender and Teboulle. The method proposed by the last authors use a coercive Bregman distance to ensure that the iterates remain in the interior of the feasible set. Our results extend this method to allow the use of the squared Euclidean distance. We also show how to estimate the Lipschitz constant of the gradient of the objective function, improving the numerical behavior of the method. Finally, we present numerical experiments to validate our approach and compare it to Nesterov\'s algorithm.
|
4 |
Finite dimensional stochastic differential inclusionsBauwe, Anne, Grecksch, Wilfried 16 May 2008 (has links) (PDF)
This paper offers an existence result for finite dimensional stochastic differential
inclusions with maximal monotone drift and diffusion terms. Kravets studied only
set-valued drifts in [5], whereas Motyl [4] additionally observed set-valued diffusions
in an infinite dimensional context.
In the proof we make use of the Yosida approximation of maximal monotone operators
to achieve stochastic differential equations which are solvable by a theorem
of Krylov and Rozovskij [7]. The selection property is verified with certain properties
of the considered set-valued maps. Concerning Lipschitz continuous set-valued
diffusion terms, uniqueness holds. At last two examples for application are given.
|
5 |
Finite dimensional stochastic differential inclusionsBauwe, Anne, Grecksch, Wilfried 16 May 2008 (has links)
This paper offers an existence result for finite dimensional stochastic differential
inclusions with maximal monotone drift and diffusion terms. Kravets studied only
set-valued drifts in [5], whereas Motyl [4] additionally observed set-valued diffusions
in an infinite dimensional context.
In the proof we make use of the Yosida approximation of maximal monotone operators
to achieve stochastic differential equations which are solvable by a theorem
of Krylov and Rozovskij [7]. The selection property is verified with certain properties
of the considered set-valued maps. Concerning Lipschitz continuous set-valued
diffusion terms, uniqueness holds. At last two examples for application are given.
|
6 |
Aproximace, numerická realizace a kvalitativní analýza kontaktních úloh se třením. / Approximation, numerical realization and qualitative analysis of contact problems with frictionLigurský, Tomáš January 2011 (has links)
Title: Approximation, numerical realization and qualitative analysis of contact problems with friction Author: Tomáš Ligurský Department: Department of Numerical Mathematics Supervisor: prof. RNDr. Jaroslav Haslinger, DrSc., Department of Numerical Mathe- matics Abstract: This thesis deals with theoretical analysis and numerical realization of dis- cretized contact problems with Coulomb friction. First, discretized 3D static contact prob- lems with isotropic and orthotropic Coulomb friction and solution-dependent coefficients of friction are analyzed by means of the fixed-point approach. Existence of at least one solution is established for coefficients of friction represented by positive, bounded and con- tinuous functions. If these functions are in addition Lipschitz continuous and upper bounds of their values together with their Lipschitz moduli are sufficiently small, uniqueness of the solution is guaranteed. Second, properties of solutions parametrized by the coefficient of friction or the load vector are studied in the case of discrete 2D static contact problems with isotropic Coulomb friction and coefficient independent of the solution. Conditions under which there exists a local Lipschitz continuous branch of solutions around a given reference point are established due to two variants of the...
|
7 |
Transport optimal : régularité et applications / Optimal Transport : Regularity and applicationsGallouët, Thomas 10 December 2012 (has links)
Cette thèse comporte deux parties distinctes, toutes les deux liées à la théorie du transport optimal. Dans la première partie, nous considérons une variété riemannienne, deux mesures à densité régulière et un coût de transport, typiquement la distance géodésique quadratique et nous nous intéressons à la régularité de l’application de transport optimal. Le critère décisif à cette régularité s’avère être le signe du tenseur de Ma-Trudinger-Wang (MTW). Nous présentons tout d’abord une synthèse des travaux réalisés sur ce tenseur. Nous nous intéressons ensuite au lien entre la géométrie des lieux d’injectivité et le tenseur MTW. Nous montrons que dans de nombreux cas, la positivité du tenseur MTW implique la convexité des lieux d’injectivité. La deuxième partie de cette thèse est liée aux équations aux dérivées partielles. Certaines peuvent être considérées comme des flots gradients dans l’espace de Wasserstein W2. C’est le cas de l’équation de Keller-Segel en dimension 2. Pour cette équation nous nous intéressons au problème de quantification de la masse lors de l’explosion des solutions ; cette explosion apparaît lorsque la masse initiale est supérieure à un seuil critique Mc. Nous cherchons alors à montrer qu’elle consiste en la formation d’un Dirac de masse Mc. Nous considérons ici un modèle particulaire en dimension 1 ayant le même comportement que l’équation de Keller-Segel. Pour ce modèle nous exhibons des bassins d’attractions à l’intérieur desquels l’explosion se produit avec seulement le nombre critique de particules. Finalement nous nous intéressons au profil d’explosion : à l’aide d’un changement d’échelle parabolique nous montrons que la structure de l’explosion correspond aux points critiques d’une certaine fonctionnelle. / This thesis consists in two distinct parts both related to the optimal transport theory.The first part deals with the regularity of the optimal transport map. The key tool is the Ma-Trundinger-Wang tensor and especially its positivity. We first give a review of the known results about the MTW tensor. We then explore the geometrical consequences of the MTW tensor on the injectivity domain. We prove that in many cases the positivity of MTW implies the convexity of the injectivity domain. The second part is devoted to the behaviour of a Keller-Segel solution in the super critical case. In particular we are interested in the mass quantization problem: we wish to quantify the mass aggregated when the blow-up occurs. In order to study the behaviour of the solution we consider a particle approximation of a Keller-Segel type equation in dimension 1. We define this approximation using the gradient flow interpretation of the Keller-Segel equation and the particular structure of the Wasserstein space in dimension 1. We show two kinds of results; we first prove a stability theorem for the blow-up mechanism: we exhibit basins of attraction in which the solution blows up with only the critical number of particles. We then prove a rigidity theorem for the blow-up mechanism: thanks to a parabolic rescaling we prove that the structure of the blow-up is given by the critical points of a certain functional.
|
Page generated in 0.0763 seconds