• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 426
  • 80
  • 56
  • 31
  • 14
  • 11
  • 9
  • 9
  • 8
  • 7
  • 4
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 767
  • 767
  • 398
  • 332
  • 200
  • 132
  • 129
  • 93
  • 90
  • 78
  • 75
  • 72
  • 69
  • 68
  • 66
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
291

Improved Synthesis and Thermal Stability of Electrode-supported α-alumina Separator for Lithium Ion Batteries

January 2016 (has links)
abstract: Lithium ion batteries have emerged as the most popular energy storage system, but they pose safety issues under extreme temperatures or in the event of a thermal runaway. Lithium ion batteries with inorganic separators offer the advantage of safer operation. An inorganic separator for lithium ion battery was prepared by an improved method of blade coating α-Al2O3 slurry directly on the electrode followed by drying. The improved separator preparation involves a twice-coating process instead of coating the slurry all at once in order to obtain a thin (~40 µm) and uniform coat. It was also found that α-Al2O3 powder with particle size greater than the pore size in the electrode is preferable for obtaining a separator with 40 µm thickness and consistent cell performance. Unlike state-of-the-art polyolefin separators such as polypropylene (PP) which are selectively wettable with only certain electrolytes, the excellent electrolyte solvent wettability of α-Al2O3 allows the coated alumina separator to function with different electrolytes. The coated α-Al2O3 separator has a much higher resistance to temperature effects than its polyolefin counterparts, retaining its dimensional integrity at temperatures as high as 200ºC. This eliminates the possibility of a short circuit during thermal runaway. Lithium ion batteries assembled as half-cells and full cells with coated α-Al2O3 separator exhibit electrochemical performance comparable with that of polyolefin separators at room temperature. However, the cells with coated alumina separator shows better cycling performance under extreme temperatures in the temperature range of -30°C to 60°C. Therefore, the coated α-Al2O3 separator is very promising for application in safe lithium-ion batteries. / Dissertation/Thesis / Masters Thesis Chemical Engineering 2016
292

Post-Combustion Electrochemical Capture and Release of CO2 and Deformation and Bulk Stress Evolution in LiMn2O4 Intercalation Compounds

January 2016 (has links)
abstract: This investigation is divided into two portions linked together by the momentous reaches of electrochemistry science, principles influencing everyday phenomena as well as innovative research in the field of energy transformation. The first portion explores the strategies for flue gas carbon dioxide capture and release using electrochemical means. The main focus is in the role thiolates play as reversible strong nucleophiles with the ability to capture CO2 and form thiocarbonates. Carbon dioxide in this form is transported and separated from thiocarbonate through electrochemical oxidation to complete the release portion of this catch-and-release approach. Two testing design systems play a fundamental role in achieving an efficient CO2 catch and release process and were purposely build and adapted for this work. A maximum faradaic efficiency of seventeen percent was attained in the first membrane tests whose analysis is presented in this work. An efficiency close to thirty percent was attained with the membrane cell in recent experiments but have not been included in this manuscript. The second portion of this manuscript studies bulk stress evolution resulting from insertion/extraction of lithium in/from a lithium manganese oxide spinel cathode structure. A cantilever-based testing system uses a sophisticated, high resolution capacitive technique capable of measuring beam deflections of the cathode in the subnanometer scale. Tensile stresses of up to 1.2 MPa are reported during delithiation along with compressive stresses of 1.0 MPa during lithiation. An analysis of irreversible charge loss is attributed to surface passivation phenomena with its associated stresses of formation following patterns of tensile stress evolution. / Dissertation/Thesis / Doctoral Dissertation Materials Science and Engineering 2016
293

A New Class of Solid State, Single-ion Conductors (H+ and Li+): Silicon-based Plastic Crystals

January 2016 (has links)
abstract: Plastic crystals as a class are of much interest in applications as solid state electrolytes for electrochemical energy conversion devices. A subclass exhibit very high protonic conductivity and its members have been investigated as possible fuel cell electrolytes, as first demonstrated by Haile’s group in 2001 with CsHSO4. To date these have been inorganic compounds with tetrahedral oxyanions carrying one or more protons, charge-balanced by large alkali cations. Above the rotator phase transition, the HXO4- anions re-orient at a rate dependent on temperature while the centers of mass remain ordered. The transition is accompanied by a conductivity "jump" (as much as four orders of magnitude, to ~ 10 mScm-1 in the now-classic case of CsHSO4) due to mobile protons. These superprotonic plastic crystals bring a “true solid state” alternative to polymer electrolytes, operating at mild temperatures (150-200ºC) without the requirement of humidification. This work describes a new class of solid acids based on silicon, which are of general interest. Its members have extraordinary conductivities, as high as 21.5 mS/cm at room temperature, orders of magnitude above any previous reported case. Three fuel cells are demonstrated, delivering current densities as high as 225 mA/cm2 at short-circuit at 130ºC in one example and 640 mA/cm2 at 87ºC in another. The new compounds are insoluble in water, and their remarkably high conductivities over a wide temperature range allow for lower temperature operations, thus reducing the risk of hydrogen sulfide formation and dehydration reactions. Additionally, plastic crystals have highly advantageous properties that permit their application as solid state electrolytes in lithium batteries. So far only doped materials have been presented. This work presents for the first time non-doped plastic crystals in which the lithium ions are integral part of the structure, as a solid state electrolyte. The new electrolytes have conductivities of 3 to 10 mS/cm at room temperature, and in one example maintain a highly conductive state at temperatures as low as -30oC. The malleability of the materials and single ion conducting properties make these materials highly interesting candidates as a novel class of solid state lithium conductors. / Dissertation/Thesis / Doctoral Dissertation Chemistry 2016
294

Nuclear Fission Weapon Yield, Type, and Neutron Spectrum Determination Using Thin Li-ion Batteries

January 2017 (has links)
abstract: With the status of nuclear proliferation around the world becoming more and more complex, nuclear forensics methods are needed to restrain the unlawful usage of nuclear devices. Lithium-ion batteries are present ubiquitously in consumer electronic devices nowadays. More importantly, the materials inside the batteries have the potential to be used as neutron detectors, just like the activation foils used in reactor experiments. Therefore, in a nuclear weapon detonation incident, these lithium-ion batteries can serve as sensors that are spatially distributed. In order to validate the feasibility of such an approach, Monte Carlo N-Particle (MCNP) models are built for various lithium-ion batteries, as well as neutron transport from different fission nuclear weapons. To obtain the precise battery compositions for the MCNP models, a destructive inductively coupled plasma mass spectrometry (ICP-MS) analysis is utilized. The same battery types are irradiated in a series of reactor experiments to validate the MCNP models and the methodology. The MCNP nuclear weapon radiation transport simulations are used to mimic the nuclear detonation incident to study the correlation between the nuclear reactions inside the batteries and the neutron spectra. Subsequently, the irradiated battery activities are used in the SNL-SAND-IV code to reconstruct the neutron spectrum for both the reactor experiments and the weapon detonation simulations. Based on this study, empirical data show that the lithium-ion batteries have the potential to serve as widely distributed neutron detectors in this simulated environment to (1) calculate the nuclear device yield, (2) differentiate between gun and implosion fission weapons, and (3) reconstruct the neutron spectrum of the device. / Dissertation/Thesis / Doctoral Dissertation Electrical Engineering 2017
295

Mixed Polyanion and Clathrate Materials as Novel Materials for Lithium-ion and Sodium-ion Batteries

January 2017 (has links)
abstract: This work describes the investigation of novel cathode and anode materials. Specifically, several mixed polyanion compounds were evaluated as cathodes for Li and Na-ion batteries. Clathrate compounds composed of silicon or germanium arranged in cage-like structures were studied as anodes for Li-ion batteries. Nanostructured Cu4(OH)6SO4 (brochantite) platelets were synthesized using polymer-assisted titration and microwave-assisted hydrothermal methods. These nanostructures exhibited a capacity of 474 mAh/g corresponding to the full utilization of the copper redox in an conversion reaction. X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) studies were preformed to understand the mechanism and structural changes. A microwave hydrothermal synthesis was developed to prepare a series compounds based on jarosite, AM3(SO4)2(OH)6 (A = K, Na; M = Fe, V). Both the morphology and electrochemical properties showed a compositional dependence. At potentials >1.5 V vs. Li/Li+, an insertion-type reaction was observed in Na,Fe-jarosite but not in K,Fe-jarosite. Reversible insertion-type reactions were observed in both vanadium jarosites between 1 – 4 V with capacities around 40 - 60 mAh/g. Below 1 V vs. Li/Li+, all four jarosite compounds underwent conversion reactions with capacities ~500 mAh/g for the Fe-jarosites. The electrochemical properties of hydrogen titanium phosphate sulfate, H0.4Ti2(PO4)2.4(SO4)0.6 (HTPS), a new mixed polyanion material with NASICON structure was reported. A capacity of 148 mAh/g corresponding to2 Li+ insertion per formula unit was observed. XRD and XPS were used to characterize the HTPS before and after cycling and to identify the lithium sites. Evaluation of the HTPS in Na-ion cell was also performed, and a discharge capacity of 93 mAh/g was observed. A systematic investigation of the role of the processing steps, such as ball-milling and acid/base etching, on the electrochemical properties of a silicon clathrate compound with nominal composition of Ba8Al16Si30 was performed. According to the transmission electron microscope (TEM), XPS, and electrochemical analysis, very few Li atoms can be electrochemically inserted, but the introduction of disorder through ball-milling resulted in higher capacity, while the oxidation layer made by the acid/base treatment prevented the reation. The electrochemical property of germanium clathrate was also investigated, unlike the silicon clathrate, the germanium one underwent a conversion reaction. / Dissertation/Thesis / Doctoral Dissertation Chemistry 2017
296

Advances in electrical energy storage using core-shell structures and relaxor-ferroelectric materials

Brown, James Emery January 1900 (has links)
Doctor of Philosophy / Department of Chemistry / Jun Li / Electrical energy storage (EES) is crucial in todays’ society owing to the advances in electric cars, microelectronics, portable electronics and grid storage backup for renewable energy utilization. Lithium ion batteries (LIBs) have dominated the EES market owing to their wide use in portable electronics. Despite the success, low specific capacity and low power rates still need to be addressed to meet the increasing demands. Particularly, the low specific capacity of cathode materials is currently limiting the energy storage capability of LIBs. Vanadium pentoxide (V₂O₅) has been an emerging cathode material owing to its low cost, high electrode potential in lithium-extracted state (up to 4.0 V), and high specific capacities of 294 mAh g⁻¹ (for a 2 Li⁺/V₂O₅ insertion process) and 441 mAh g⁻¹ (for a 3 Li⁺/V₂O₅ insertion process). However, the low electrical conductivities and slow Li⁺ ion diffusion still limit the power rate of V₂O₅. To enhance the power-rate capability we construct two core-shell structures that can achieve stable 2 and 3 Li⁺ insertion at high rates. In the first approach, uniform coaxial V₂O₅ shells are coated onto electrospun carbon nanofiber (CNF) cores via pulsed electrodeposition. The materials analyses confirm that the V₂O₅ shell after 4 hours of thermal annealing at 300 °C is a partially hydrated amorphous structure. SEM and TEM images indicate that the uniform 30 to 50 nm thick V₂O₅ shell forms an intimate interface with the CNF core. Lithium insertion capacities up to 291 and 429 mAh g⁻¹ are achieved in the voltage ranges of 4.0 – 2.0 V and 4.0 – 1.5 V, respectively, which are in good agreement with the theoretical values for 2 and 3 Li⁺/V₂O₅ insertion. Moreover, after 100 cycles, remarkable retention rates of 97% and 70% are obtained for 2 and 3 Li⁺/V₂O₅ insertion, respectively. In the second approach, we implement a three-dimensional (3D) core-shell structure consisting of coaxial V₂O₅ shells sputter-coated on vertically aligned carbon nanofiber (VACNF) cores. The hydrated amorphous microporous structure in the “as-deposited” V₂O₅ shells and the particulated nano-crystalline V₂O₅ structure formed by thermal annealing are compared. The former provides remarkably high capacity of 360 and 547 mAh g⁻¹ in the voltage range of 4.0 – 2.0 V and 4.0 – 1.5 V, respectively, far exceeding the theoretical values for 2 and 3 Li⁺/V₂O₅ insertion, respectively. After 100 cycles of 3 Li⁺/V₂O₅ insertion/extraction at 0.20 A g⁻¹ (~ C/3), ~ 84% of the initial capacity is retained. After thermal annealing, the core-shell structure presents a capacity of 294 and 390 mAh g⁻¹, matching well with the theoretical values for 2 and 3 Li⁺/V₂O₅ insertion. The annealed sample shows further improved stability, with remarkable capacity retention of ~100% and ~88% for 2 and 3 Li⁺/V₂O₅ insertion/extraction. However, due to the high cost of Li. alternative approaches are currently being pursued for large scale production. Sodium ion batteries (SIB) have been at the forefront of this endeavor. Here we investigate the sodium insertion in the hydrate amorphous V₂O₅ using the VACNF core-shell structure. Electrochemical characterization was carried out in the potential ranges of 3.5 – 1.0, 4.0 – 1.5, and 4.0 – 1.0 (vs Na/Na⁺). An insertion capacity of 196 mAh g-1 is achieved in the potential range of 3.5 – 1.0 V (vs Na/Na⁺) at a rate of 250 mA g⁻¹. When the potential window is shifted upwards to 4.0 – 1.5 V (vs Na/Na⁺) an insertion capacity of 145 mAh g⁻¹ is achieved. Moreover, a coulombic efficiency of ~98% is attained at a rate of 1500 mA g⁻¹. To enhance the energy density of the VACNF-V₂O₅ core-shell structures, the potential window is expanded to 4.0 – 1.0 V (vs Na/Na⁺) which achieved an initial insertion capacity of 277 mAh g⁻¹. The results demonstrate that amorphous V₂O₅ could serve as a cathode material in future SIBs.
297

LCA and Responsible Innovation of Nanotechnology

January 2013 (has links)
abstract: Life cycle assessment (LCA) is a powerful framework for environmental decision making because the broad boundaries called for prevent shifting of burden from one life-cycle phase to another. Numerous experts and policy setting organizations call for the application of LCA to developing nanotechnologies. Early application of LCA to nanotechnology may identify environmentally problematic processes and supply chain components before large investments contribute to technology lock in, and thereby promote integration of environmental concerns into technology development and scale-up (enviro-technical integration). However, application of LCA to nanotechnology is problematic due to limitations in LCA methods (e.g., reliance on data from existing industries at scale, ambiguity regarding proper boundary selection), and because social drivers of technology development and environmental preservation are not identified in LCA. This thesis proposes two methodological advances that augment current capabilities of LCA by incorporating knowledge from technical and social domains. Specifically, this thesis advances the capacity for LCA to yield enviro-technical integration through inclusion of scenario development, thermodynamic modeling, and use-phase performance bounding to overcome the paucity of data describing emerging nanotechnologies. With regard to socio-technical integration, this thesis demonstrates that social values are implicit in LCA, and explores the extent to which these values impact LCA practice and results. There are numerous paths of entry through which social values are contained in LCA, for example functional unit selection, impact category selection, and system boundary definition - decisions which embody particular values and determine LCA results. Explicit identification of how social values are embedded in LCA promotes integration of social and environmental concerns into technology development (socio-enviro-technical integration), and may contribute to the development of socially-responsive and environmentally preferable nanotechnologies. In this way, tailoring LCA to promote socio-enviro-technical integration is a tangible and meaningful step towards responsible innovation processes. / Dissertation/Thesis / M.S. Engineering 2013
298

Mechanics of Silicon Electrodes in Lithium Ion Batteries

January 2014 (has links)
abstract: As one of the most promising materials for high capacity electrode in next generation of lithium ion batteries, silicon has attracted a great deal of attention in recent years. Advanced characterization techniques and atomic simulations helped to depict that the lithiation/delithiation of silicon electrode involves processes including large volume change (anisotropic for the initial lithiation of crystal silicon), plastic flow or softening of material dependent on composition, electrochemically driven phase transformation between solid states, anisotropic or isotropic migration of atomic sharp interface, and mass diffusion of lithium atoms. Motivated by the promising prospect of the application and underlying interesting physics, mechanics coupled with multi-physics of silicon electrodes in lithium ion batteries is studied in this dissertation. For silicon electrodes with large size, diffusion controlled kinetics is assumed, and the coupled large deformation and mass transportation is studied. For crystal silicon with small size, interface controlled kinetics is assumed, and anisotropic interface reaction is studied, with a geometry design principle proposed. As a preliminary experimental validation, enhanced lithiation and fracture behavior of silicon pillars via atomic layer coatings and geometry design is studied, with results supporting the geometry design principle we proposed based on our simulations. Through the work documented here, a consistent description and understanding of the behavior of silicon electrode is given at continuum level and some insights for the future development of the silicon electrode are provided. / Dissertation/Thesis / Ph.D. Mechanical Engineering 2014
299

Simulation of Intermittent Current Interruption measurements on NMC-based lithium-ion batteries

Lindqvist, Daniel January 2017 (has links)
The objective of this report was to implement battery cycling and an intermittent current interruption (ICI) method for determining battery resistance into a simple lithium-ion battery model in the finite element methods (FEM) program COMSOL Multiphysics, andevaluate how accurately the model reflects the behaviour of voltage and internal resistance with respect to experimental results. The ICI technique consists of repeating the steps of first having a longer charging period and then having a short current interruption, where the internal resistance is calculated from the voltage drop that occurs when the current is turned off. The model was evaluated against measurements, made with the same technique (ICI), on assembled NMC-graphite batteries. Codes written in the statistical programming language “R” were used to process the data from both COMSOL and the experiments. Both the batteries and the model were constructed with a reference electrode, to enable measurement of each electrode by itself. The results as documented in this report show that it is possible to simulate the measurement technique in COMSOL, but that both the resistance and voltage profiles differed quite a lot from the behaviour of the tested batteries. The resistance of the positive electrode did however give good results and it was possible to improve the model by changing some parameters. The magnitude of the resistance, which was already quite close, could be improved by changing the porosity and particle size, and the voltage profiles were improved when using voltage-data achieved from the real measurements.
300

UNDERSTANDING AND IMPROVING MANUFACTURING PROCESSES FOR MAKING LITHIUM-ION BATTERY ELECTRODES

AL-Shroofy, Mohanad N. 01 January 2017 (has links)
Lithium-ion batteries (LIBs) have been widely used as the most popular rechargeable energy storage and power sources in today’s portable electronics, electric vehicles, and plug-in hybrid electric vehicles. LIBs have gained much interest worldwide in the last three decades because of their high energy density, voltage, rate of charge and discharge, reliability, and design flexibility. I am exploring the possibility of developing battery manufacturing technologies that would lower the cost, reduce the environmental impact, and increase cell performance and durability. This dissertation is focused firstly on understanding the effect of mixing sequence (the order of introducing materials) and optimizing the electrode fabrication for the best electrochemical performance, durability, lower cost, and improve the existing manufacturing processes. The electrode system consists of active material, polymer binder, conductive agent, and solvent. I have investigated four different mixing sequences to prepare the slurries for making the positive electrode. The key sequence-related factor appears to be whether the active material and conductive agent are mixed in the presence of or prior to the introduction of the binder solution. The mixing sequences 1, 2, 3, and 4 were optimized, and the rheological behavior of the slurries, morphology, conductivity, and mechanical and electrochemical properties of electrodes were investigated. Slurries from sequences 1 and 4 show different rheological properties from 2 and 3. The amount of NMP required to achieve a comparable final slurry viscosity differed significantly for the sequences under study. The sequence 1 shows better long-term cycling behavior than sequences 2, 3 and 4. This study quantifies the link between electrode slurry mix parameters and electrode quality. Secondly, a new method of making lithium-ion battery electrodes by adapting an immersion precipitation (IP) technology commonly used in membrane manufacturing was developed and demonstrated. The composition, structure, and electrochemical performance of the electrode made by the IP method were compared favorably with that made by the conventional method. The toxic and expensive organic solvent (NMP) was captured in coagulation bath instead of being released to the atmosphere. The IP electrodes show an excellent performance and durability at potentially lower cost and less environmental impact. Thirdly, I have developed and demonstrated a solvent-free dry-powder coating process for making LiNi1/3Mn1/3Co1/3O2 (NMC) positive electrodes in lithium-ion batteries, and compared the performance and durability of electrodes made by the dry-powder coating processes with that by wet-slurry coating processes. The technology that has been used is the electrostatic spray deposition (ESD) process. This process eliminates volatile organic compound emission, reduces thermal curing time from hours to minutes, and offers high deposition rates onto large surfaces. The long-term cycling shows that the dry-powder coated electrodes have similar performance and durability as the conventional wet-slurry made electrodes.

Page generated in 0.0492 seconds