• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 426
  • 80
  • 56
  • 31
  • 14
  • 11
  • 9
  • 9
  • 8
  • 7
  • 4
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 767
  • 767
  • 398
  • 332
  • 200
  • 132
  • 129
  • 93
  • 90
  • 78
  • 75
  • 72
  • 69
  • 68
  • 66
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
301

Determining the Power and Energy Capacity of a Battery Energy Storage System Utilizing a Smoothing Feeder Profile to Accommodate High Photovoltaic Penetration on a Distribution Feeder

Mansour, Osama Mohammed Abbas Aly 25 July 2016 (has links)
Electricity is a perishable commodity; once it is generated it needs to be consumed or stored. Electric energy storage provides both power and energy capacity. Power capacity applications reduce the need for generation, while energy capacity allows for energy consumption to be decoupled from generation. Previous research was done to develop an algorithm for determining the power (MW) and energy (MWh) capacities of a battery energy storage system (BESS) to mitigate the adverse impacts of high levels of photovoltaic (PV) generation. The algorithm used a flat feeder profile, and its performance was demonstrated on the equinoxes and solstices. Managing feeder power leads to fewer voltage fluctuations along the length of the feeder, potentially mitigating load management issues caused by variability of renewable generation and load profile. These issues include lighting flicker, compressor seizing, equipment shut-off, loss of motor torque, frequent transformer tap changes and even voltage collapse due to loss of reactive power support. The research described in this thesis builds on this algorithm by incorporating a smoothed feeder profile and testing it over an entire year. Incorporating a smoothing function reduces the requisite BESS energy capacity necessary to provide firming and shaping to accommodate the stochastic nature of PV. Specifically, this method is used to conduct a year-long study on a per second basis, as well as a one-minute basis, for a distribution feeder. Statistical analytical methods were performed to develop recommendations for appropriately sizing the BESS. This method may be used to determine the amount of PV generation that could be installed on a distribution feeder with a minimal investment in the BESS power and energy capacities that would be required to manage the distribution feeder power. Results are presented for PV penetration levels of 10%-50% of the distribution feeder capacity and show that the use of a smooth feeder profile reduces the required energy capacity by a minimum factor of 10 when compared to a flat feeder profile. Results indicated that it is sufficient to have a one-minute sampling rate, as it provides the necessary granularity to model cloud-induced fluctuations. This method can be applied to any distribution feeder where a load profile and a PV profile are available.
302

Carbon Nanotube Based Systems for High Energy Efficient Applications

Lahiri, Indranil 20 September 2011 (has links)
In the current age of fast-depleting conventional energy sources, top priority is given to exploring non-conventional energy sources, designing highly efficient energy storage systems and converting existing machines/instruments/devices into energy-efficient ones. ‘Energy efficiency’ is one of the important challenges for today’s scientific and research community, worldwide. In line with this demand, the current research was focused on developing two highly energy-efficient devices – field emitters and Li-ion batteries, using beneficial properties of carbon nanotubes (CNT). Interface-engineered, directly grown CNTs were used as cathode in field emitters, while similar structure was applied as anode in Li-ion batteries. Interface engineering was found to offer minimum resistance to electron flow and strong bonding with the substrate. Both field emitters and Li-ion battery anodes were benefitted from these advantages, demonstrating high energy efficiency. Field emitter, developed during this research, could be characterized by low turn-on field, high emission current, very high field enhancement factor and extremely good stability during long-run. Further, application of 3-dimensional design to these field emitters resulted in achieving one of the highest emission current densities reported so far. The 3-D field emitter registered 27 times increase in current density, as compared to their 2-D counterparts. These achievements were further followed by adding new functionalities, transparency and flexibility, to field emitters, keeping in view of current demand for flexible displays. A CNT-graphene hybrid structure showed appreciable emission, along with very good transparency and flexibility. Li-ion battery anodes, prepared using the interface-engineered CNTs, have offered 140% increment in capacity, as compared to conventional graphite anodes. Further, it has shown very good rate capability and an exceptional ‘zero capacity degradation’ during long cycle operation. Enhanced safety and charge transfer mechanism of this novel anode structure could be explained from structural characterization. In an attempt to progress further, CNTs were coated with ultrathin alumina by atomic layer deposition technique. These alumina-coated CNT anodes offered much higher capacity and an exceptional rate capability, with very low capacity degradation in higher current densities. These highly energy efficient CNT based anodes are expected to enhance capacities of future Li-ion batteries.
303

Computational modelling studies of lithiated TiO2 nano-architectured structures at different temperatures, for energy storage applications

Rikhotso, Blessing Nkateko January 2019 (has links)
Thesis (M. Sc. (Chemistry)) -- University of Limpopo, 2019 / Nano-architecture structures of LixTiO2 are very promising as anode materials for lithium rechargeable batteries due to their ability to accommodate more lithium atoms and its ability to withstand high temperatures at atomistic level through charging and discharging. In these studies, we investigated how nano-architectured structures of LixTiO2 behave at high temperatures through the process of amorphisation and recrystallisation. A computational method of molecular dynamics (MD) simulation was employed to recrystallise the amorphous LixTiO2 nano-architectures of bulk, nanosheet, nanoporous and nanosphere, where x depicts the fraction of lithium ions, i.e. 0.03, 0.04 and 0.07. The main objective of this study was to go beyond the previous inserted lithium atoms on TiO2 and understand the effects of concentrations, temperature, defect chemistry and charge storage properties/capacity on the overall lithium transport to improve lithium ion battery performance. Recrystallisation of all four nanostructures from amorphous precursors were successfully achieved and was followed by the cooling process towards 0 K and finally we heated all four nano-architectures at temperature intervals of 100 K up to 500 K. The variation of configuration energies as a function of time, was used to monitor the crystal growth of all nanostructures. Calculated Ti-O radial distribution function, were used to confirm the stability interaction after cooling. Calculated X-Ray Diffraction (XRD) spectra where used to characterise and compare their patterns at cooled and above high temperatures, using the model nanostructures, and they showed polymorphic nanostructures with LixTiO2 domains of both rutile and brookite in accord with experiment. Amorphisation and recrystallization showed good results in generating complex microstructures. In particular, bulk structures show few zigzag tunnels (indicative of micro twinning) with 0.03 Li but 0.04 Li and 0.07 Li show complex v patterns indicating a highly defected structure. While 0.03 and 0.04Li nanospheres show, zigzag and straight tunnels in accord with experiment, the one with 0.07 Li has melted. Lastly, nanoporous and nanosheet structures have pure straight and zigzag patterns that are well in accord with our XRD patterns at all concentrations of lithium atoms and temperatures. The lithium transport was analysed using diffusion coefficient, calculated as a function of temperature in order to confirm the mobility above the given temperatures. An increase in temperature shows an increase in diffusivity of lithium at all lithium concentrations in nanoporous and nanosheet structures. The same trend was observed in bulk but only with 0.03 and 0.07 Li ion concentrations. / National Research Foundation (NRF)
304

Computer simulation studies of MnO2 and LiMn2O4 nanotube

Tshwane, David Magolego January 2016 (has links)
Thesis (MSc. (Physics)) -- University of Limpopo, 2016 / Nanostructured materials are attractive candidates for efficient electrochemical energy storage devices because of their unique physicochemical properties. Introducing nanotube systems as electrode materials represents one of the most attractive strategies that could dramatically enhance the battery performance. Nanostructured manganese based oxides are considered as ideal electrode materials for energy storage devices such as high energy and high power lithium-ion batteries. In this study, computer simulation strategies were used to generate various structures of MnO2 and spinel LiMn2O4 nanotubes; where Miller index, diameter and symmetry are considered as variables. The effect of these variables on nanotube generation was investigated. MnO2 and spinel LiMn2O4 nanotubes were generated using MedeA® software. Lower Miller indices, namely; {001}, {100}, {110} and {111} with diameter ranging from 5Å30Å were investigated for both systems. There are two ways that a nanotube structures could be wrapped along different directions, i.e., a_around_b or b_around_a. It was observed that wrapping direction has an effect on the geometrical structure of the nanotube. MnO2 nanotube generated from {110} revealed that nanotube wrapped along b_around_a gave a close-packed structure compared to its counterpart nanotube wrapped a_around_b. Diameter represents an important structural parameter of nanotubes; however, precise control of nanotube diameter over a wide range of materials is yet to be demonstrated. In this study, it was found that as the diameter of the nanotube is changed, parameters such as cross-sectional area and bond length change as well. The average bond distance of the nanotubes is less than that of MnO2 and LiMn2O4 bulk structure. Molecular dynamics simulation is further used to investigate the structure of MnO2 and LiMn2O4 nanotubes and the effect of temperature on the generated systems. Molecular graphical images used for the atomic positions for the nanotubes were investigated. The nanotube structures are described using radial distribution functions and XRD patterns. The calculated XRD patterns are in good agreement with the experiments, thus validating the generated structural models for the nanotubes. The resulting models conform to pyrolusite polymorph of MnO2 and LiMn2O4, featuring octahedrally coordinated manganese atoms. It was established that the variables have a direct control on nanotube morphology and the stability of generated nanotube model depends on surface morphology and termination. / National Research Foundation (NRF) and Centre for High Performance Computing (CHPC) of CSIR
305

Suggestions for implementation of Statistical Process Control in Lithium-ion battery processes : A field study at Northvolt

Trydegård, Maximilian, Blide, Magnus January 2020 (has links)
Due to growing awareness of sustainable development and renewable sources of electricity, the public demand for electric cars has increased during the last decade, Lithium-ion batteries are used to power today's electric cars and the batteries are mainly produced in Asia. The need for batteries in the automobile industry in Europe has led to the birth of many new organisations, Northvolt is one of them. The mission at Northvolt is to bring lithium-ion batteries to the European market. The process of producing Lithium-ion batteries is complex and includes several sub-processes that together will generate the final product. The quality of the processes and product are important for performance as well as safety. Statistical Process Control is one way of creating and maintaining good quality. This thesis aims to describe how Statistical Process Control can be implemented in the context of Lithium-ion battery production. To answer the aim, a literature study and a field study were conducted at Northvolt labs in Västerås. The field study collected data through interviews, as well as observations on the different processes in production. A thematic analysis was conducted, the findings resulted in a framework for implementation of Statistical Process Control in the Lithium-ion battery industry. The framework has similarities with other frameworks gathered from literature on Statistical Process Control implementation but differs in some key aspects. A clear emphasis on initial focus regarding training and education is one aspect that contributes to the existing literature and a practical contribution to organisations in the batter production industry. Early focus on process definition and identification of critical-to-quality characteristics are also aspects that are emphasised in the developed framework. The emphasize on these factors are connected to the complexity of the processes of the Lithium-ion battery production.
306

Silicon-nanographite aerogel-based anodes for high performance lithium ion batteries

Patil, Rohan January 2020 (has links)
No description available.
307

Controlling Coherency Phase Boundary for High Performance Batteries / 蓄電池の高性能化に資する相境界面制御

Yoshinari, Takahiro 25 March 2019 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(人間・環境学) / 甲第21877号 / 人博第906号 / 新制||人||216(附属図書館) / 2018||人博||906(吉田南総合図書館) / 京都大学大学院人間・環境学研究科相関環境学専攻 / (主査)教授 内本 喜晴, 教授 吉田 寿雄, 准教授 藤原 直樹 / 学位規則第4条第1項該当 / Doctor of Human and Environmental Studies / Kyoto University / DFAM
308

Electrochemical Analysis on Reaction Sites of Graphite Electrodes with Surface Film in Lithium-ion Batteries / 表面被膜存在下における黒鉛電極の反応場に関する研究

Inoo, Akane 23 March 2020 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第22456号 / 工博第4717号 / 新制||工||1737(附属図書館) / 京都大学大学院工学研究科物質エネルギー化学専攻 / (主査)教授 安部 武志, 教授 作花 哲夫, 教授 阿部 竜 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DGAM
309

Analysis of Crystal and Electronic Structures of Next Generation Cathode Materials / 次世代正極材料の結晶構造及び電子構造の解析

Watanabe, Aruto 23 March 2020 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(人間・環境学) / 甲第22549号 / 人博第952号 / 新制||人||226(附属図書館) / 2019||人博||952(吉田南総合図書館) / 京都大学大学院人間・環境学研究科相関環境学専攻 / (主査)教授 内本 喜晴, 教授 吉田 寿雄, 准教授 戸﨑 充男 / 学位規則第4条第1項該当 / Doctor of Human and Environmental Studies / Kyoto University / DFAM
310

Studies on electrochemical behavior of graphite materials as a lithium-ion battery negative electrode / リチウムイオン電池負極用黒鉛材料の電気化学挙動に関する研究

Maruyama, Shohei 23 March 2021 (has links)
京都大学 / 新制・論文博士 / 博士(工学) / 乙第13407号 / 論工博第4193号 / 新制||工||1762(附属図書館) / (主査)教授 安部 武志, 教授 作花 哲夫, 教授 阿部 竜 / 学位規則第4条第2項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DGAM

Page generated in 0.0417 seconds