• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 426
  • 80
  • 56
  • 31
  • 14
  • 11
  • 9
  • 9
  • 8
  • 7
  • 4
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 767
  • 767
  • 398
  • 332
  • 200
  • 132
  • 129
  • 93
  • 90
  • 78
  • 75
  • 72
  • 69
  • 68
  • 66
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
321

Comparative Environmental Analysis of Conventional and Hybrid Wheel Loader Technologies : A Life Cycle Perspective

Salman, Omer, Chen, Yanbin January 2013 (has links)
Volvo Construction Equipment is investigating the potential of hybrid wheel loaders. To determine if this new hybrid wheel loader concept is preferable from an environmental point of view to the latest G- series Volvo wheel loader, a comparative life cycle assessment (LCA) has been performed  on the Volvo L150G wheel loader and a hybrid wheel loader concept. The complete machines have been studied throughout their life cycle: raw material extraction, material processing, manufacturing processes, transportation, use phase, and end of life. In order to quantitatively assess the environmental impact of all lifecycle stages, five different environmental indicators have been used: global warming potential, abiotic resource depletion potential, acidification potential, eutrophication potential and ozone depletion potential. In addition, a sensitivity analysis and two weighting methods are used to interpret the results. The results show that a hybrid wheel loader concept reduces environmental impacts significantly compared to a conventional L150G, except the impact category ADP (element). Moreover, the use phase has by far the greatest impact within the life cycle, for most impact categories (90% of the total life cycle impact). A sensitivity analysis on use phase with impacts also showed the limitations for use in China. / Volvo Construction Equipment undersöker potentialen av hybrid hjullastare. För att avgöra om ett hybrid hjullastare koncept har fördelar ur miljösynpunkt jämfört med en G-serien Volvo hjullastare har en jämförande livscykelanalys (LCA) utförts på Volvo L150G hjullastare och ett hybrid hjullastarkoncept. De kompletta maskinerna har studerats under hela deras livscykel: utvinning av råmaterial, materialbearbetning, tillverkningsprocesser, transport, användningsfas och slutet av skrotningsfasen. För att kvantitativt kunna bedöma miljökonsekvenserna av alla livscykelnskeden har fem olika miljöindikatorer använts: global uppvärmningspotential, abiotiska resursutarmningspotential, försurningspotential, övergödningspotential och ozonnedbrytingspotential. En känslighetsanalys och två viktningsmetoder har tillämpats för att tolka resultaten. Resultaten visar att ett hybrid hjullastarkoncept minskar miljöpåverkan avsevärt jämfört med en konventionell L150G, förutom påverkan från kategorin resursutarmningspotential. Dessutom har användningsprocessen i särklass störst påverkan inom livscykeln för de flesta effekt kategorier (90% av den totala livscykelpåverkan). En känslighetsanalys på användningsprocessen och dess effekter visade också på begränsningar för användning i Kina.
322

Analysis of Lithium-Ion Battery Data Collected  On-Board Electric Vehicles

Peng, Lin January 2013 (has links)
In order to replace diesel energy in the transportation sector as well as to reduce the emission of green house gases (GHGs) and avoid air pollution for a sustainable future, electrification of vehicles is one of the most popular topics today. Plug-in hybrid electric vehicle (PHEV) technology is a promising technology for electrification of automobiles. It uses both internal combustion engine and electric motor for propulsion. The battery pack that propels the electric machine can be recharged from grid electricity and from kinetic energy converted from regenerative braking. In this thesis, field test data from a Volvo V70 prototype in a 2010 study by Volvo and Vattenfall (ETC, Volvo, Vattenfall, 2010) was analyzed with Matlab to give a better understanding of the usage of PHEVs and the performance of lithium-ion battery. Several conclusions were obtained in this thesis from the analyzed data. It was found that average and maximum driving speed in Diesel Mode is faster than that in Electric Mode. Different drivers had different preference of driving speed. Driving distance vary in different months; longer distance was running under Diesel Mode; A considerable number of 370 kg carbon dioxide emission was saved by using electric energy instead of diesel energy for the studied car during one year. Battery performance in cold temperature conditions needs to be considered and the vehicle was switched to Diesel Mode from Electric Mode when SOC falls below 30%.
323

Development of a Novel Method for Lithium-Ion Battery Testing on Heavy-Duty Vehicles

Svens, Pontus January 2011 (has links)
Increasing demands for lower environmental impact from vehicles, including heavy-duty vehicles, have driven several vehicle manufacturers to consider adding hybrid electrical vehicles (HEV’s) to the product portfolio. Present research on batteries for HEV’s is mainly focused on lithium-ion battery chemistries, since lithium-ion batteries has the most promising technical potential compared to other types of batteries. However, the uncertainty regarding battery lifetime combined with a high battery cost can have a negative impact on large scale commercialisation of heavy-duty hybrid vehicles in the near future. A large part of present lithium-ion battery research is focused on new materials, but there is also research focusing on ageing of already established lithium-ion battery chemistries. Cycle ageing of batteries often includes complete charging and discharging of batteries or the use of standardized test cycles. Battery cycling in real HEV applications is however quite different compared to this kind of laboratory testing, and real life testing on vehicles is a way of verifying the soundness of laboratory ageing. The aim of this study was to develop a test method suitable for real life testing of lithium-ion batteries for heavy-duty HEV-usage, with the purpose of investigating the correlation of battery ageing and usage in real life applications. This concept study includes both cell level battery cycling and performance testing on board vehicles. The performance tests consist of discharge capacity measurements and hybrid pulse power characterization (HPPC) tests. The main feature of this test equipment is that it is designed to be used on conventional vehicles, emulating an HEV environment for the tested battery. The functionality of the equipment was verified on a heavy-duty HEV with satisfying results. Results from real life testing of 8 batteries using the developed test equipment on four conventional heavy-duty trucks shows that the concept of comparing battery ageing with battery usage has a most promising potential to be used as a tool when optimizing battery usage vs. lifetime. Initial results from this real life study shows significant differences in state of charge (SOC) and power distributions between cycled batteries, but so far only small differences in ageing. Lithium-ion batteries of the type lithium manganese spinel/lithium titanate (LMO/LTO) were used in this study. / Ökande krav på minskad miljöpåverkan från fordon, inklusive tunga fordon, har drivit flera fordonstillverkare till att addera hybridiserade fordon till produktportföljen. Forskning på hybridfordonsbatterier är idag huvudsakligen inriktad på litiumjonbatterikemier, vilken har den mest lovande tekniska potentialen jämfört med andra typer av batterikemier. Det finns idag en risk att osäkerheten kring litiumjonbatteriers livslängd i kombination med en hög batterikostnad kan ha en negativ inverkan på en storskalig kommersialisering av tunga hybridfordon inom den närmsta framtiden. En stor del av batteriforskningen är inriktad på nya material, men det finns även forskning som fokuserar på åldring av redan etablerade litiumjonbatterikemier. Vid åldringsprov används ofta standardiserade testcykler eller cykler där batterierna blir fullständigt laddade och urladdade. Cykling av batterier i verkliga förhållanden skiljer sig dock från den typen av laboratorietester och provning på fordon är därför ett sätt att kontrollera att laboratorieprovning ger relevanta resultat gällande åldring. Syftet med denna studie var att utveckla en testmetodik lämplig för provning av litiumjonbatterier för tunga hybridfordon i verklig drift, med syfte att undersöka kopplingen mellan batteriers åldrande och hur det används. Detta koncept inkluderar battericykling på cellnivå och möjligheten att utföra batteriprestandatester på fordon, där prestandatesterna består av kapacitetsprov och pulsprov. Den viktigaste egenskapen hos den utvecklade testmetodiken är att provning sker på konventionella fordon genom att emulera en hybridmiljö för det testade batteriet. Funktionaliteten hos den utvecklade testutrustningen verifierades på en tung hybridlastbil med goda resultat. Resultaten från en fältstudie av 8 batterier på 4 lastbilar där den utvecklade testutrustningen användes påvisar att testmetodiken har en lovande potential att kunna användas som ett verktyg vid optimering av utnyttjandegrad och livslängd för HEV-batterier. De initiala resultaten från denna fältstudie påvisar skillnader i laddningsgradsfördelning och batterieffektfördelning mellan cyklade batterier, men ännu bara små skillnader i åldring. Litiumjonbatterier av typen litiummanganspinel/litiumtitanat (LMO/LTO) användes i denna studie. / QC 20111205
324

Impedance-Spectroscopic Quantification of High Bulk Ionic Conductivity in Li1.3Al0.3Ti1.7(PO4)3 Solid Electrolyte

Mertens, Andreas, Yu, Shicheng, Gunduz, Deniz C., Tempel, Hermann, Schierholz, Roland, Kungl, Hans, Granwehr, Josef, Eichel, Rüdiger-A. 12 September 2018 (has links)
No description available.
325

Evaluation of Density Functional Theory for Lithium Ion Migration in 1T-LiTiS2

Werth, Vanessa, Islam, Mazharul M., Volgmann, Kai, Heitjans, Paul, Bredow, Thomas 13 September 2018 (has links)
No description available.
326

The Elusive LiBi3S5: Synthesis, Characterization, and Topological Analysis

Wiedemann, Dennis, Nakhal, Suliman, Stanje, Bernhard, Dolotko, Oleksandr, Wilkening, Martin, Lerch, Martin 13 September 2018 (has links)
No description available.
327

Li Ion Diffusion in Isotope-diluted Glassy Li2Si3O7 – The Generation of pure Spin-3/2 Spin-alignment NMR Echoes

Wohlmuth, Dominik, Epp, Viktor, Bauer, Ute, Welsch, Anna-Maria, Behrens, Harald, Wikening, Martin 13 September 2018 (has links)
No description available.
328

Continuum Level Physics-based Model on Understanding and Optimizing the Lithium Transport in High-Energy-Density LIB/LMB Electrodes

Hui, Zeyu January 2022 (has links)
As an efficient means of energy storage, rechargeable batteries, especially the lithium-ion batteries (LIBs) have been a vital component in solving the upcoming energy crisis and environmental problems. Recently, the development of electric vehicle market puts new requirement on the next generation LIBs, including superior energy density, safety and cycling stability, etc. Compared with experimental investigation, Physics-based models provide a surrogate method to not only tackle the underlying physics of the complex battery system, but also optimize the design of battery systems. In this thesis, I will show how I use the physics-based continuum model and cooperate with some experimental methods to understand the lithium transport phenomena inside the multiscale battery electrode systems, based on which the models are then applied to guide the experimental optimization of battery electrode design and to quantitively understand the degradation of high-performance electrodes. The thesis is divided into three parts. First part (Chapter 2) presents a systematical model selection study on the multiscale LiNi₀.₃₃Mn₀.₃₃Co₀.₃₃O₂ (NMC₁₁₁) electrode. Discharge and voltage relaxation curves, interrogated with theory, are used to distinguish between lithium transport impedance that arise on the scale of the active crystal and on the scale of agglomerates (secondary particles) comprised of nanoscale crystals. Model-selection algorithms are applied to determine that the agglomerate scale transport is dominant in the NMC₁₁₁ electrode studied here. This study not only discovers the dominant length scale for lithium transport, but also provide a validated model (the agglomerate model) for later study. The second part (Chapter 3 & 4) talks about understanding & optimization of ion transport in porous electrodes. In Chapter 3, multi-scale physics-based models for different active material systems, which have been parameterized and validated with discharge experiments, are optimized by varying porosity and mass loading to achieve maximum volumetric energy density. The optimization results show that with a re-scaling of the current rate, the optimal results follow a general design rule that is captured in a convenient correlation. Chapter 4 extends the model to simulate the performance of advanced electrode architectures utilizing aligned channels, by quantifying the impact of aligned channel electrode structures on cell rate capability. Then the optimization algorithm in Chapter 3 is applied to these aligned-channel electrodes. The final part (Chapter 5) shows how I use the physics-based model to quantitatively analyze the battery degradation. The validated model is applied to cycling data to obtain parameter estimates indicative of degradation modes. It’s found that growth rates of interfacial impedance and active material loss are greater at 4.5 V, as might be expected. However, when charged to 4.5V, degradation rates are lower at a cycling C-rate of 1.0 h⁻¹ than at 0.5 h⁻¹. Once performance changes are quantified, we use further simulation to evaluate the contribution of individual degradation modes to fade of cell performance metric such as capacity, power density, and energy density.
329

TECHNOLOGICAL AND ENVIRONMENTAL SUSTAINABILITY OF BATTERY-POWERED ELECTRIC VEHICLES

yang, fan 02 June 2020 (has links)
No description available.
330

Density functional tightbinding studies of TiO2 polymorphs

Gandamipfa, Mulatedzi January 2020 (has links)
Thesis (Ph.D. (Physics)) -- University of Limpopo, 2021 / Titanium dioxide is among the most abundant materials and it has many of interesting physical and chemical properties (i.e., low density, high thermal and mechanical strength, insensitivity to corrosion) that make it a compound of choice for electrodes materials in energy storage. There are, however, limitations on the theoretical side to using the main electronic structure theories such as Hartree-Fock (HF) or densityfunctional (DFT) especially for large periodic and molecular systems. The aim of the theses is to develop a new, widely transferable, self-consistent density functional tight binding SCC-DFTB data base of TiO2, which could be applied in energy storage anodes with a large number of atoms. The TiO2, LiTiO2 and NaTiO2 potentials were derived following the SCC-DFTB parameterization procedure; where the generalized gradient approximation (GGA) and local density approximation (LDA) exchange-correlation functional were employed yielding Slater-Koster DFTB parameters. The results of derived parameters were validated by being compared with those of the bulk rutile and brookite polymorphs. The structural lattice parameters and electronic properties, such as the bandgaps were well reproduced. Most mechanical properties were close to those in literature, except mainly for C33 which tended to be underestimated due to the choice of exchange-correlation functional. The variation of the bulk lattice parameter and volume with lithiation and sodiation were predicted and compared reasonably with those in literature. The newly derived DFTB parameters were further used to calculate bulk properties of the anatase, which is chemically more stable than other polymorphs. Generally, the accuracy of the lattice structural, electronic and mechanical properties of the bulk anantase were consistent with those of the rutile and brookite polymorphs. Furthermore, nanostructures consisting of a large number of atoms, which extend beyond the normal scope of the conventional DFT calculations, were modelled both structurally and electronically. Structural variations with lithiation was consistent with experimental and sodiation tends to enhance volume expansion than lithiation. Anatase TiO2 and LiTO2 nanotubes of various diameters were generated using NanoWrap builder within MedeA® software. Its outstanding resistance to expansion during lithium insertion and larger surface area make the TiO2 nanotube a promising candidate for rechargeable lithium ion batteries. The outcomes of this study will be beneficial to future development of TiO2 nanotube and other nanostructures. Lastly, our DFTB Slater-Koster potentials were applied to recently discovered trigonal bipyramid (TB), i.e. TiO2 (TB)-I and TiO2 (TB)-II polymorphs, which have enormous 1D channels that provide suitable pathways for mobile ion transport. All structural, electronic properties were consistent with those in literature and all elastic properties agreed excellently with those that were calculated using DFT methods. Finally, the bulk structures of the two polymorphs, were lithiated and sodiated versions and electronic and structural properties were studied, together with the lithiated versions of associated nanostructures consisting of a large number of atoms. Generally, the TiO2 (TB)-I structure was found to be mechanically, energetically more stable and ductile than TiO2 (TB)-II. Hence, it will be beneficial to use TiO2 (TB)-I as an anode material for sodium ion batteries (SIB), due to its unique ductility and larger 1D channels. / National Research Fund (NRF), Department of Science and Innovation (DSI), Material Modelling Centre

Page generated in 0.0388 seconds