• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 37
  • 4
  • 4
  • 4
  • 3
  • 3
  • Tagged with
  • 60
  • 60
  • 38
  • 20
  • 17
  • 16
  • 14
  • 13
  • 12
  • 12
  • 12
  • 11
  • 10
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

A lithium–sulfur full cell with ultralong cycle life: influence of cathode structure and polysulfide additive

Thieme, Sören, Brückner, Jan, Meier, Andreas, Bauer, Ingolf, Gruber, Katharina, Kaspar, Jörg, Helmer, Alexandra, Althues, Holger, Schmuck, Martin, Kaskel, Stefan 19 December 2019 (has links)
Lithium–sulfur batteries are highly attractive energy storage systems, but suffer from structural anode and cathode degradation, capacity fade and fast cell failure (dry out). To address these issues, a carbide-derived carbon (DUT-107) featuring a high surface area (2088 m² g⁻¹), high total pore volume (3.17 cm³ g⁻¹) and hierarchical micro-, meso- and macropore structure is applied as a rigid scaffold for sulfur infiltration. The DUT-107/S cathodes combine excellent mechanical stability and high initial capacities (1098–1208 mA h gs ⁻¹) with high sulfur content (69.7 wt% per total electrode) and loading (2.3–2.9 mgs cm⁻²). Derived from the effect of the electrolyte-to-sulfur ratio on capacity retention and cyclability, conducting salt is substituted by polysulfide additive for reduced polysulfide leakage and capacity stabilization. Moreover, in a full cell model system using a prelithiated hard carbon anode, the performance of DUT-107/S cathodes is demonstrated over 4100 cycles (final capacity of 422 mA h gs ⁻¹), with a very low capacity decay of 0.0118% per cycle. Application of PS additive further boosts the performance (final capacity of 554 mA h gs ⁻¹), although a slightly higher decay of 0.0125% per cycle is observed.
52

Zur Degradation und Optimierung von nanostrukturierten Siliciumanoden in Lithium-Ionen- und Lithium-Schwefel-Batterien: Zur Degradation und Optimierung von nanostrukturierten Siliciumanoden in Lithium-Ionen- und Lithium-Schwefel-Batterien

Jaumann, Tony 28 November 2016 (has links)
Die vorliegende Arbeit liefert einen Beitrag für ein besseres Verständnis über die zyklische Alterung von Siliciumnanopartikel (Si-NP) als Anodenmaterial in Lithium-Ionen- und Lithium-Schwefel-Batterien. Im Fokus der Studie stand der Einfluss der Partikelgröße, des Elektrodendesigns und der Elektrolytzusammensetzung auf die elektrochemische Reversibilität des Siliciums zur Lithiumspeicherung. Über umfangreiche strukturelle Charakterisierungstechniken mittels Röntgenbeugung, Elektronenmikroskopie und der Röntgenphotoelektronenspektroskopie in Verbindung mit elektrochemischen Untersuchungsmethoden, konnten wesentliche Mechanismen zur Degradation aufgeklärt und die Funktion diverser Oberflächenverbindungen auf der Siliciumanode identifiziert werden. Als Hauptursache der Degradation von Si-NP mit einer Partikelgröße unter 20 nm konnte das Wachstum der Solid-Electrolyte-Interface (SEI) identifiziert werden. Pulverisierung und die Bildung neuer kristalliner Phasen kann ausgeschlossen werden. Es wurde ein kostengünstiges und flexibles Verfahren zur Herstellung eines nanostrukturierten Silicium-Kohlenstoff-Komposites entwickelt, welches unter optimierten Bedingungen eine spezifische Kapazität von 1280 mAh/g(Elektrode) und einen Kapazitätserhalt von 81 % über 500 Tiefentladungszyklen liefert. Es konnten erfolgreich hoch reversible Flächenkapazitäten von 5 mAh/cm^2 bei nur 4,4 mg/cm^2 Elektrodengewicht nachgewiesen werden. Für die Arbeit wurde zunächst ein Verfahren zur Herstellung von monodispersen Si-NP mit einer Größe von 5 nm – 20 nm angewendet. Die galvanostatische Zyklierung gegen Lithiummetall hat ergeben, dass mit abnehmender Partikelgröße die Reversibilität des Siliciums zunimmt. Über in situ Synchrotron XRD und post mortem XPS konnte eine stabilere Solid-Electrolyte-Interface (SEI) mit abnehmender Partikelgröße als Hauptursache identifiziert werden. Im weiteren Verlauf der Arbeit wurden Si-NP im porösen Kohlenstoffgerüst durch ein leicht modifiziertes Herstellungsverfahren abgeschieden und untersucht. Durch das veränderte Elektrodendesign konnte die Reversibilität bei gleichem Kohlenstoffgehalt deutlich verbessert werden, da der Kontaktverlust des Siliciums zum leitfähigen Gerüst durch SEI Wachstum verzögert wird. Die Elektrolytadditive Fluoroethylencarbonat und Vinylencarbonat führen zu einer weiteren Verbesserung der Reversibilität, wobei Vinylencarbonat die höchste Reversibilität zur Folge hat, jedoch einen hohen Filmwiderstand verursacht. Weiterhin wurden etherbasierte Elektrolyte, welche typischerweise in Lithium-Schwefel-Batterien zum Einsatz kommen, untersucht. Hierbei wurde eine positive Wirkung von Lithiumnitrat auf die Reversibilität von Silicium festgestellt. Es konnten erfolgreich Si-Li-S (SLS) Vollzellen getestet werden, welche eine höhere Lebensdauer als vergleichbare Zellen mit Lithiummetall als Anode aufweisen. Aus den elektrochemischen und post mortem Untersuchungen konnte ein positiver Einfluss von Polysulfiden auf die SEI von Silicium nachgewiesen werden. Durch die umfangreichen post mortem Analysen konnte die Funktion diverser, in der SEI des Siliciums auftretender Verbindungen in Abhängigkeit der Elektrolytzusammensetzung aufgeklärt werden. Es wurde ein anschaulicher Mechanismus des SEI Wachstums in Abhängigkeit des Elektrolyts erstellt. / The results of this work provide a better understanding about the cyclic aging of silicon nanoparticles (Si-NP) as anode material in Lithium-ion- and Lithium-sulfur batteries. Subject of investigation was the influence of particle size, electrode design and electrolyte composition on the electrochemical reversibility of Si-NP for lithium storage. The main characterization techniques used in this study were XRD, SEM, TEM and XPS combined with electrochemical analysis and in situ synchrotron XRD. Bare silicon nanoparticles ranging from 5 – 20 nm and silicon nanoparticles embedded within a porous carbon scaffold were prepared through a cost-effective and novel synthesis technique including the hydrolysis of trichlorosilane as feedstock. The dominant degradation mechanism of these silicon nanoparticles was identified to be the continuous growth the solid-electrolyte-interphase (SEI). Other phenomena such as pulverisation or new evolving crystalline phases are excluded. It was found that a reduction of the particle size from 20 nm to 5 nm increases the reversibility due to a thicker and therewith more stable SEI. The deposition of the silicon nanoparticles into a porous carbon scaffold caused a significant improvement of the reversibility at constant carbon content. The effect of the electrolyte additives Fluoroethylene carbonate and Vinylene carbonate was analysed in detail. Furthermore, typical electrolyte compositions used for lithium-sulfur-batteries were tested and studied. Si-Li-S (SLS) full cells were demonstrated which outperform conventional lithium-sulfur batteries in terms of life time. The systematic analysis and the rational optimization process of the particle size, electrode design and electrolyte composition allowed to provide a nanostructured silicon electrode with a specific capacity of up to 1280 mAh/g(Electrode) and 81 % capacity retention after 500 deep discharge cycles. Reversible areal capacities of 5 mAh/cm^2 at 4.4 mg/cm^2 electrode weight were demonstrated.
53

Solid-State NMR Characterization of Polymeric and Inorganic Materials

Baughman, Jessi Alan 19 May 2015 (has links)
No description available.
54

Mehrlingspolymerisation in Substanz und an Oberflächen zur Synthese nanostrukturierter und poröser Materialien

Ebert, Thomas 12 December 2016 (has links) (PDF)
Die vorliegende Arbeit befasst sich mit der Synthese und Charakterisierung von unterschiedlichen nanostrukturierten Hybridmaterialien ausgehend von nur einem Monomer. Dabei wird ein neuartiges Monomer vorgestellt, welches in einem Prozessschritt ein Hybridmaterial bestehend aus drei Polymeren bilden kann. Dies erweitert das Konzept der Zwillingspolymerisation, bei der zwei Polymere aus einem Monomer erhalten werden. Aus diesem Grund wurde der Überbegriff „Mehrlingspolymerisation“ für die Synthese von zwei oder mehr Polymeren aus nur einem Monomer eingeführt. Ein weiterer Schwerpunkt lag auf der gezielten Beschichtung verschiedener Partikeloberflächen mit nanostrukturierten Hybridmaterialien mittels Zwillingspolymerisation. Dabei wird der Einfluss der Oberfläche auf die Polymerisation verschiedener Zwillingsmonomere untersucht. Durch Nachbehandlung sind daraus poröse Kompositmaterialien zugänglich. Je nach Beständigkeit der Substrate sind diese in den Nachbehandlungsschritten stabil oder werden entfernt und dienen nur als Template zur Strukturierung der porösen Materialien. Es wurden unterschiedliche poröse Kohlenstoffe und Kohlenstoffkompositmaterialien hergestellt und charakterisiert. Ausgewählte Materialien wurden mit Schwefel verschmolzen und in Lithium-Schwefel-Zellen untersucht (Kooperation Dr. S. Choudhury, Leibniz-Institut für neue Materialien Saarbrücken). Die Charakterisierung der Proben erfolgte unter anderem mithilfe der Festkörper-NMR-Spektroskopie, Elektronenmikroskopie, dynamischen Differenzkalorimetrie, Röntgenpulver-diffraktometrie, Infrarotspektroskopie, Raman-Spektroskopie, Thermogravimetrie und Stickstoffsorption.
55

Accumulateur lithium/soufre : développement et compréhension des mécanismes électrochimiques / Lithium/Sulfur batteries : development and understanding of the working mechanisms

Walus, Sylwia 15 January 2015 (has links)
Dans ce travail de thèse, deux objectifs ont été fixés. Le premier a été de mieux comprendre le mécanisme très complexe qui est en jeu dans les accumulateurs Li/S. Pour cela, les modifications structurales du matériau actif ont été observées in operando et ont permis de valider un modèle clair concernant les réactions de transformations de phases qui contrôlent le lithium/soufre. La cristallisation d’une forme métastable du soufre (bêta-S8 monoclinique) en fin de recharge a ainsi été observée pour la première fois lors d’expériences au synchrotron de l’ESRF. La technique d’impédance électrochimique a également donné d’importantes informations sur les cinétiques deces réactions. Le deuxième objectif visait l’amélioration du système Li/S par l’optimisation des électrodes de soufre afin d’augmenter leurs performances mais également par la fabrication d’électrodes de Li2S efficaces permettant la transition vers le Li-ion/S, plus sécuritaire. / In this work two main aspects has been conducted in parallel. The first one was focused on betterunderstanding the very complex working mechanism of Li/S cell. Structural changes evolution ofactive material upon real time battery operation was explored, giving a clear answer on thesolid/liquid reaction evolution, which govern the electrochemistry of Li/S technology. Formationof another allotropic form of sulfur (monoclinic beta-S8) during recharging the battery have beenreported for the first time ever in Li/S community. Impedance technique applied to such systemprovided additional information concerning the kinetics of these reactions. Apart from that,another aspect targeted rather on improvements of already existing solutions (making better sulfurelectrodes, with significantly improved specific capacities) as well as development the alternativesolutions, i.e. fabrication and test of new Li2S-based positive electrodes, which could be apromising transition from classical Li/S cells into safer Li-ion/S batteries.
56

Analýza bateriových hmot metodami EDS / Analysis of active material for batteries by EDS

Vídeňský, Ondřej January 2019 (has links)
This master thesis deals with analysis of battery mass using x-ray spectral microanalysis. For the measurement two scanning electron microscopes equipped with energy dispersive x-ray spectroscopes were used. Appropriate examples were prepaired by standard method. Then elemental analysis was performed with changing conditions of measurement. Two programs were used for spectrums evaluation and in the end the size of errors was observed for every conditions.
57

Graphene-directed two-dimensional porous carbon frameworks for high-performance lithium–sulfur battery cathodes

Shan, Jieqiong, Liu, Yuxin, Su, Yuezeng, Liu, Ping, Zhuang, Xiaodong, Wu, Dongqing, Zhang, Fan, Feng, Xinliang 19 December 2019 (has links)
Graphene-directed two-dimensional (2D) nitrogen-doped porous carbon frameworks (GPF) as the hosts for sulfur were constructed via the ionothermal polymerization of 1,4-dicyanobenzene directed by the polyacrylonitrile functionalized graphene nanosheets. As cathodes for lithium–sulfur (Li–S) batteries, the prepared GPF/sulfur nanocomposites exhibited a high capacity up to 962 mA h g⁻¹ after 120 cycles at 2 A g⁻¹. A high reversible capacity of 591 mA h g⁻¹ was still retained even at an extremely large current density of 20 A g⁻¹. Such impressive electrochemical performance of GPF should benefit from the 2D hierarchical porous architecture with an extremely high specific surface area, which could facilitate the efficient entrapment of sulfur and polysulfides and afford rapid charge transfer, fast electronic conduction as well as intimate contact between active materials and the electrolyte during cycling.
58

Mehrlingspolymerisation in Substanz und an Oberflächen zur Synthese nanostrukturierter und poröser Materialien

Ebert, Thomas 07 November 2016 (has links)
Die vorliegende Arbeit befasst sich mit der Synthese und Charakterisierung von unterschiedlichen nanostrukturierten Hybridmaterialien ausgehend von nur einem Monomer. Dabei wird ein neuartiges Monomer vorgestellt, welches in einem Prozessschritt ein Hybridmaterial bestehend aus drei Polymeren bilden kann. Dies erweitert das Konzept der Zwillingspolymerisation, bei der zwei Polymere aus einem Monomer erhalten werden. Aus diesem Grund wurde der Überbegriff „Mehrlingspolymerisation“ für die Synthese von zwei oder mehr Polymeren aus nur einem Monomer eingeführt. Ein weiterer Schwerpunkt lag auf der gezielten Beschichtung verschiedener Partikeloberflächen mit nanostrukturierten Hybridmaterialien mittels Zwillingspolymerisation. Dabei wird der Einfluss der Oberfläche auf die Polymerisation verschiedener Zwillingsmonomere untersucht. Durch Nachbehandlung sind daraus poröse Kompositmaterialien zugänglich. Je nach Beständigkeit der Substrate sind diese in den Nachbehandlungsschritten stabil oder werden entfernt und dienen nur als Template zur Strukturierung der porösen Materialien. Es wurden unterschiedliche poröse Kohlenstoffe und Kohlenstoffkompositmaterialien hergestellt und charakterisiert. Ausgewählte Materialien wurden mit Schwefel verschmolzen und in Lithium-Schwefel-Zellen untersucht (Kooperation Dr. S. Choudhury, Leibniz-Institut für neue Materialien Saarbrücken). Die Charakterisierung der Proben erfolgte unter anderem mithilfe der Festkörper-NMR-Spektroskopie, Elektronenmikroskopie, dynamischen Differenzkalorimetrie, Röntgenpulver-diffraktometrie, Infrarotspektroskopie, Raman-Spektroskopie, Thermogravimetrie und Stickstoffsorption.
59

Vliv lisovacího tlaku na elektrochemické vlastnosti elektrod pro akumulátory Li-S / Effect of compaction pressure to the electrochemical properties of the electrodes for Li-S accumulators

Jaššo, Kamil January 2016 (has links)
The purpose of this diploma thesis is to describe the impact of compaction pressure on the electrochemical parameters of lithium-sulfur batteries. Theoretical part of this thesis contains briefly described terminology and general issues of batteries and their division. Every kind of battery is provided with a closer description of a specific battery type. A separate chapter is dedicated to lithium cells, mainly lithium-ion batteries. Considering various composition of lithium-ion batteries, this chapter deeply analyzes mostly used active materials of electrodes, used electrolytes and separators. Considering that the electrochemical principle of Li-S and Li-O batteries is different to Li-ion batteries, these accumulators of new generation are included in individual subhead. In the experimental part of this thesis are described methods used to measure electrochemical parameters of Li-S batteries. Next chapter contains description of preparing individual electrodes and their composition. Rest of the experimental part of my thesis is dedicated to the description of individual experiments and achieved results.
60

Nanostrukturierter Kohlenstoff durch Zwillingspolymerisation an Hart-Templaten

Böttger-Hiller, Falko 13 September 2012 (has links)
Gegenstand der vorliegenden Arbeit ist die Herstellung von nanostrukturierten Kohlenstoffen. Die Synthese erfolgt dabei durch die Zwillingspolymerisation der siliziumhaltigen Zwillingsmonomere 2,2’Spirobi[4H-1,3,2-benzodioxasilin] sowie Tetrafurfuryloxysilan. Die entstehenden Nanokomposite werden anschließend carbonisiert und das SiO2-Netzwerk herausgelöst. Die Zwillingsmonomere wurden dabei zunächst templatfrei umgesetzt, um Einflüsse verschiedener Reaktionsparameter auf die Eigenschaften der erhaltenen Kohlenstoffe zu evaluieren. Des Weiteren wurde studiert, wie sich die Zugabe von Hart-Templaten auf das Polymerisationsverhalten der Zwillingsmonomere, sowie die Porosität und Morphologie der daraus resultierenden Kohlenstoffe auswirkt. Für die Charakterisierung der nanostrukturierten Kohlenstoffe wurde vorwiegend auf Elektronenmikroskopie und Stickstoffsorptions-Experimente zurückgegriffen. Mit Hilfe der Zwillingspolymerisation an Hart-Templaten, wie SiO2-Partikeln, Glasfasern und ORMOCER®en konnte die Morphologie, Geometrie, Größe und Porentextur der Kohlenstoffe eingestellt und ein modulares Synthesekonzept für poröse, nanostrukturierte Kohlenstoffe entwickelt werden. Ferner wurden ausgewählte Kohlenstoffe auf Anwendung als Wasserstoffspeicher und Elektrodenmaterial in Lithium-Schwefel-Zellen getestet. In diesem Zusammenhang wurden die Thermogravimetrie, die Differenzkalorimetrie und Stickstoff-Sorptionsmessungen eingesetzt, um die Batterieeigenschaften in Zukunft ohne das Durchführen aufwendiger Zelltests zu prognostizieren.

Page generated in 0.0444 seconds