Spelling suggestions: "subject:"lithospheric mantle"" "subject:"iithospheric mantle""
1 |
Extension and subsidence of the continental lithosphereWhite, N. J. January 1988 (has links)
The uniform stretching model successfully accounts for the general features of many extensional sedimentary basins. However, the amount of extension measured across normal faults in the upper crust is often thought to be significantly less than that calculated from subsidence analysis and crustal thinning. At present, more complicated models, which incorporate two-layer stretching, multiple stretching phases and flexural rigidity, are used to explain this extension discrepancy. The principal aim of this dissertation is to show that the extension discrepancy can be resolved in the northern North Sea without abandoning the uniform stretching model. Other observations are also explained by minor changes to the model. Basin evolution is addressed both on a small and on a large scale. A kinematic model for hanging wall deformation, which is assumed to occur by arbitrarily inclined simple shear and by differential compaction, is proposed. Fault geometries can be calculated from sedimentary horizons within hanging walls using an inversion scheme based on this model. Results suggest that hanging wall shear is inclined towards the main fault. This implies that the amount of extension across a fault is considerably greater than the apparent horizontal displacement. Syn-rift footwall uplift is explained by combining the simple domino-style fault model with the uniform stretching model. The 'steer's head' cross-sectional geometry of sedimentary basins is usually explained either by fluctuations in sea-level or by increasing flexural rigidity of the continental lithosphere during post-rift cooling. Here, a two-layer stretching model is proposed, where the lithospheric mantle is stretched over a fractionally wider region than is the crust. This accounts for the observed extent of post-rift stratigraphic onlap in the North Sea and does not alter conclusions concerning the extension discrepancy. The geometrical and thermal consequences of lithospheric simple shear are investigated using a numerical model. Results predict that, as for the uniform stretching model, crustal thinning is symmetrical about the basin. Maximum thinning is also coincident with maximum subsidence. However, the magnitude of post-rift subsidence varies across the basin, allowing the uniform stretching model and the lithospheric simple shear model to be distinguished. The different models described here have been applied to regional seismic reflection profiles and well-log information from the northern North Sea. On the best constrained profile, the extension measured across normal faults agrees well with that calculated by subsidence analysis. The major observations are thus consistent with the predictions of the uniform stretching model.
|
2 |
Effect of chlorine on the melting of the subcratonic lithospheric mantleChu, Linglin 06 1900 (has links)
The presence of chlorine in the subcratonic lithospheric mantle (SCLM) has been evaluated by compiling the compositional data of fluid inclusions in fibrous diamonds. Chlorine associates with potassium, dissolving in water and forming a KCl-bearing brine with the Cl/(Cl+H2O) molar ratio of 0.05-0.68.
To examine the effect of such a KCl-bearing brine on the melting behavior of the SCLM, we conducted experiments in the Mg2SiO4-MgSiO3-H2O and Mg2SiO4-MgSiO3-KCl-H2O systems at 5 GPa and 1100-1700C. In the Mg2SiO4-MgSiO3-H2O system, the solidus temperature of forsterite+enstatite is ~1230C. In the Mg2SiO4-MgSiO3-KCl-H2O systems with molar Cl/(Cl+H2O) ratios of 0.2, 0.4 and 0.6, the solidus temperatures are ~1430C, ~1530C and ~1580C, respectively. The increase in the temperature of the solidus demonstrates that KCl elevates the solidus of the Mg2SiO4-MgSiO3-H2O system. Therefore, KCl in the SCLM can prevent melting at the H2O-saturated solidus, and a KCl-bearing fluid can be a robust agent for mantle metasomatism.
|
3 |
Effect of chlorine on the melting of the subcratonic lithospheric mantleChu, Linglin Unknown Date
No description available.
|
4 |
The evolution of the oceanic lithospheric mantle: experimental and observational constraintsShejwalkar, Archana 12 April 2016 (has links)
The oceanic lithosphere forms as a residue of partial melting of the mantle beneath the mid-ocean ridge axis. Subduction of this residual layer has a profound impact on the Earth’s thermal and geochemical cycles as the recycling of this layer facilitates heat loss from the Earth’s interior and induces geochemical heterogeneities in the mantle. The goal of this study is to understand the thermal and geochemical evolution of the oceanic lithospheric mantle from a petrological perspective. An empirical geobarometer is calibrated for ocean island xenoliths in order to understand the thermal structure of the oceanic lithospheric mantle. The results of 0.1 MPa experiments from this study and high-pressure experiments from previous studies are used in the calibration. The uncertainties on pressures derived using the above geobarometer are high and hence could not be tested against thermal models for the oceanic lithosphere. The geochemical evolution of the oceanic lithospheric mantle involves post-melting geochemical modifications such as metasomatism. The geochemical evolution of the uppermost oceanic lithospheric mantle is studied using harzburgites from Hess Deep ODP Site 895, which are depleted in moderately incompatible elements relative to the global suite of abyssal peridotites. A comparison between Yb-abundances in Hess Deep harzburgites
iii
iv
and those of a model depleted MORB mantle (DMM) residue reveals that the harzburgites have undergone up to 25% melting, assuming 0.5% melt porosity. Higher light and middle rare earth elements in the Hess Deep harzburgites than the model DMM melting residue are interpreted as the result of plagioclase crystallisation from melts being extracted by diffuse porous flow through the upper mantle. The effect of plagioclase crystallisation does not affect the chemistry of residual mineral phases as evidenced from the depleted light rare earth element abundances in clinopyroxene relative to the bulk rock. Ocean island xenoliths are studied to understand when and where metasomatism occurs in the deeper portion of the oceanic lithosphere. The median values of measured and reconstructed bulk concentration of Al2O3 in most ocean island xenoliths is lower than in abyssal peridotites, which generally would be interpreted as indicating a higher extent of melting in the former. However, a comparison between Yb- abundances in ocean island xenoliths and abyssal peridotites with a model DMM melting residue suggests that the extents of melting in the suites of rocks are broadly similar. Although fewer in number than ocean island xenoliths, abyssal peridotites from several locations have low concentrations of moderately incompatible elements. Metasomatism is observed in both, ocean island xenoliths and abyssal peridotites in the form of higher bulk rock Ce and Nd concentration than the model DMM melting residue but the extent of metasomatism is higher in ocean island xenoliths. There is no correlation between the concentrations of bulk rock Ce, Nd, Sm and Eu of ocean island xenoliths and age of the oceanic lithosphere from which the xenoliths originate. It is interpreted that metasomatism in the lower oceanic lithospheric mantle occurs near the ridge axis above the wings of the melting column. / Graduate / 0996 / 0372
|
5 |
Les quatre isotopes du soufre dans les kimberlites de Sibérie, traceurs du recyclage de croûte océanique et de sédiments Archéens dans le manteau terrestre / Quadruple sulfur isotopes in Siberian kimberlites, tracers of Archean oceanic crust and sediments recycled into the Earth's mantleKitayama, Yumi 16 November 2018 (has links)
Héritées de l’atmosphère primitive, des anomalies dans les abondances relatives des isotopes du soufre (32S, 33S, 34S et 36S) sont enregistrées dans les sédiments terrestres d’il y a plus de 2,5 milliards d’années (i.e. archéens). Nous évaluons ici la robustesse des isotopes du soufre à tracer le recyclage précoce de croûte océanique et de sédiments, transférés dans le manteau profond ou stockés dans le manteau lithosphérique depuis la mise en place de la subduction. En Sibérie, le manteau lithosphérique a été naturellement échantillonné par l’éruption de la kimberlite d’Udachnaya-Est. Extrêmement bien préservée, riche en Na, K, Cl, S et contenant des reliques de croûte océanique Archéenne, cette kimberlite nous permet de tester : (1) l’hypothèse du recyclage de soufre atmosphérique Archéen dans le manteau lithosphérique et/ou la source de cette kimberlite ; (2) la cohérences entre les méthodes in situ (SIMS dans les minéraux de sulfure) et bulk (extraction chimique du soufre et spectrométrie de masse à source gazeuse) pour les mesures multi-isotopiques du soufre. Nos résultats, complétés par des mesures isotopiques en Rb-Sr, Sm-Nd et plomb (204Pb, 206Pb, 207Pb, 208Pb), montrent que : (1) les sulfates de la kimberlite et des nodules composés de chlorure-carbonate ont une origine magmatique profonde, non-contaminée par les sédiments encaissants, suggérant la présence de domaines oxydés et riches en sulfates dans le manteau ; (2) les mesures isotopiques du soufre par méthode bulk sont cohérentes avec les populations de sulfures observées in situ ; (3) les sulfures des kimberlites salées sont appauvris en 34S par rapport à la valeur chondritique et enregistrent de faibles anomalies isotopiques en soufre ; (4) les péridotites déformées contiennent d’autres sulfures appauvris en 34S, qui eux préservent des anomalies en 33S et 36S héritées de la surface archéenne, malgré un équilibrage isotopique du chronomètre U-Pb lors de l’éruption de la kimberlite / Inherited from the early atmosphere, anomalies in the relative abundances of sulfur isotopes (32S, 33S, 34S and 36S) are recorded in sediments older than 2.5 billion year (i.e. Archean). Here we test the robustness of sulfur isotopes to trace the early recycling of oceanic crust and sediments that may have been transferred to the deep mantle or stored in the lithospheric mantle since the onset of subduction. In Siberia, the lithospheric mantle has been naturally sampled by the Udachnaya-East kimberlite while it was erupting. Because it is extremely well preserved, rich in Na, K, Cl, S and contains remnants of oceanic crust recycled during the Archean, this kimberlite enables us to test : (1) the hypothesis of an early recycling of Archean atmospheric sulfur in the lithospheric mantle and/or the deeper source of the kimberlite; (2) the coherence between in situ (SIMS in sulfide minerals) and bulk methods (chemical extraction of sulfur from powdered rocks, followed by gas source mass-spectrometry) for measuring multiple sulfur isotopes. Our results, combined with measurements of Rb-Sr, Sm-Nd and lead (204Pb, 206Pb, 207Pb, 208Pb) isotopes, show that: (1) sulfates from the Udachnaya-East kimberlite and its nodules composed of chloride-carbonate have a deep, magmatic origin, uncontaminated by host sediments, suggesting the presence of sulfate-rich, oxidized domains in the mantle; (2) measurements of sulfur isotopes by bulk methods are consistent with the sulfide populations observed in situ; (3) sulfides from salty kimberlites are depleted in 34S with respect to the chondritic value and record small anomalies in sulfur isotopes ; (4) sheared peridotites contain another population of sulfides that are depleted in 34S and preserve 33S and 36S anomalies inherited from the Archean surface, despite resetting of the U-Pb chronometer during kimberlite eruption
|
6 |
Controle de mudanças estruturais sob altas pressões e altas temperaturas da esmectita saturada em potássioCarniel, Larissa Colombo January 2013 (has links)
O manto litosférico é depletado em elementos incompatíveis como potássio, rubídio e estrôncio, confinado sob altas condições de pressão e caracterizado por uma composição e mineralogia específicas: espinélios anidros e/ou granada lherzolitos e harzburgitos. Esta região pode ser hidratada e enriquecida em elementos incompatíveis (ex. potássio) através de processos de subducção, onde a placa oceânica subductada leva consigo material pelágico composto de argilominerais e filossilicatos. A transferência de massa entre a placa subductada com os sedimentos e a cunha mantélica ocorre primeiramente através da liberação de fluidos aquosos gerados pela devolatilização de minerais hidratados. Neste contexto, a esmectita destaca-se como um dos mais importantes minerias responsáveis pelo enriquecimento do manto litosférico em água e elementos incompatíveis, quando sua estrutura é desestabilizada. Com o aumento da pressão e temperatura, esmectitas perdem sua água interlamelar, ao mesmo tempo em que se transformam em camadas mistas esmectita-ilita. Nestas condições de desidratação, e com o aumento da pressão, mudanças estruturais ocorrem e, havendo potássio disponível no sistema, o argilomineral evolui para uma mica muscovita. Considerando este contexto, o presente trabalho tem como objetivo verificar o comportamento estrutural da esmectita saturada em potássio modificando as variáveis pressão e temperatura: (1) sob pressão atmosférica em diferentes temperaturas (100º a 700ºC); (2) sob pressão de até 11.5 GPa sem temperatura - Diamond Anvil Cell (DAC); (3) sob diferentes pressões com aplicação de temperatura: 2.5GPa (400º a 700ºC) e 4.0GPa (200º a 700ºC). Os resultados das técnicas de análise de Difração de raios X, Microscopia Eletrônica de Varredura (MEV), Microscopia Eletrônica de Transmissão (MET) e Espectroscopia por Infravermelho (FTIR) sugerem que, sob uma pressão de 2.5 GPa, que é cerca de 75km de profundidade no manto, e a aproximadamente 500ºC, a esmectita transforma-se em muscovita, enquanto sob a pressão de 4.0 Gpa, equivalente a cerca de 120 km de profundidade, a mesma transformação ocorre a 400ºC. Estes resultados contribuem significativamente para o entendimento de como a desidratação do sedimento pelágico ocorre em um processo de subducção, bem como o comportamento da esmectita sob a influência do aumento de pressão e temperatura. / The lithospheric mantle is depleted regarding to incompatible elements as potassium, rubidium and strontium, confined under pressure conditions and characterized by a specific mineralogy and composition, basically as anhydrous spinel and/or garnet lherzolite and harzburgite. This region can be hydrated and enriched in incompatible elements (e.g. potassium) through subduction processes that bring pelagic material, composed of clay minerals and other phyllosilicates, together with the hydrated subducted oceanic slab. A mass transfer from the subducted slab plus sediments into the mantle wedge occurs primarily through the release of aqueous fluids produced by devolatilization of hydrated minerals. In this context, smectite stands out as one of the most important minerals responsible for enriching the lithospheric mantle with water and incompatible elements when its structure is destabilized. By pressure and temperature increasing smectite lose its interlayer water, at the same time that it transforms into a mixed-layer illite-smectite. In this condition of dehydration and with increasing pressure, structural changes occur and, having potassium available on the system, the clay mineral evolves into a muscovite mica. Considering this context, we verified the structural behavior of potassium saturated smectite modifying variables pressure and temperature: (1) under atmospheric pressure at different temperatures (100º to 700º C); (2) under pressure up 11.5 GPa without temperature - Diamond Anvil Cell (DAC); (3) under different pressures with temperature application: 2.5 GPa (400º to 700º C) and 4.0 GPa (200º to 700º C). The results of the analysis techniques of X-ray diffraction, Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and Infrared Spectroscopy (FTIR), suggest that under the pressure of 2.5 GPa, which is about 75km depth in the mantle, and at around 500ºC smectite transforms into muscovite, while under the pressure of 4.0 GPa, equivalent to around 120km depth, the same transformation occurs at 400ºC. These results contribute significantly to understanding how pelagic sediment dehydration occurs in a subduction process, as well as the behavior of smectite under the influence of increasing pressure and temperature.
|
7 |
Conditions of diamond formation and preservation from on- and off-craton settingsHunt, Lucy Unknown Date
No description available.
|
8 |
Heterogeneidades do manto litosférico subcontinental sob a Patagônia : influências de subducção na cunha mantélica e de interações litosfera-astenosferaGervasoni, Fernanda January 2012 (has links)
A região sul da placa Sul-Americana, hoje pertencente à região da Patagônia Argentina e Chilena, formou-se por consequência de acreções continentais desde o Proterozóico. Atualmente, a região é caracterizada por um complexo sistema de placas tectônicas, no qual as placas oceânicas de Nazca, Antártica e Scotia interagem diretamente com a placa continental Sul-Americana através dos processos de subducção e transcorrência. Entre as placas de Nazca e Antártica, ocorre a dorsal do Chile, e a subducção desta dorsal sob a placa Sul-Americana forma a Junção Tríplice do Chile, ocorrendo o soerguimento da astenosfera na região. O magmatismo Cenozóico de composição alcalina que ocorre na região da Patagônia Argentina e Chilena hospeda xenólitos mantélicos ultramáficos de classificação espinélio- e granada-peridotitos. Estes xenólitos são de extrema importância para a caracterização e identificação dos processos atuantes no manto superior abaixo dessa complexa região que hoje é a Patagônia. Estudos do sistema isotópico Re-Os nos xenólitos de Prahuaniyeu (41°20’09.4”S, 67°54’08.1”W), e Chenque (43°38’39.3”S, 68°56’22”W), na região norte da Patagônia Argentina, sugerem que a litosfera abaixo de Prahuaniyeu (TRD ~ 1.69 Ga) é mais antiga que Chenque (TRD ~ 0.71 Ga). Dados de Rb-Sr mostram que a litosfera da região norte da Patagônia possui altas razões 87Sr/86Sr (Prahuaniyeu: 0,7037 a 0,7041; Chenque: 0.7037 a 0.7086), devido fluidos relacionados a desidratação de uma placa de subducção. Através destes dados e dos dados geoquímicos, o manto litosférico subcontinental da região norte da Patagônia sofreu metassomatismo relacionado a slabs derivados de antigas placas de subducção e que proporcionou características de metassomatismo por líquidos/fluidos do tipo-OIB, e atualmente sofreu metassomatismo relacionado aos fluidos derivados da desidratação da placa de subducção atual (Nazca), caracterizados pelo enriquecimento em calcófilos. Todos os peridotitos de Laguna Timone (52°01’39” S, 70°12’53” W), no Campo Vulcânico de Pali Aike, região sul da Patagônia Chilena, também apresentam expressivo enriquecimento nos elementos calcófilos sugerindo que o manto litosférico subcontinental da região sul da Patagônia também foi metasomatisado pelos fluidos derivados da desidratação da placa de subducção atual (Antártica). Em Laguna Timone também há a ocorrência de um glimerito entre os xenólitos e a presença de flogopita e pargasita nos peridotitos classificados como gr-sp lherzolitos, sp-lherzolitos e gr-sp harzburgitos. A presença de um glimerito, de peridotitos com minerais hidratados (flogopita e pargasita) e as similaridades com peridotitos metassomatisados por líquidos astenosféricos (peridotitos do distrito de Manzaz, Argélia e do campo vulcânico Vitim, no lago de Baikal, Sibéria) com baixas razões Ba/Nb, Ba/La e U/Nb, indicam que a litosfera da região sul da Patagônia sofreu metassomatismo por fluidos astenosféricos, ocasionado devido o soerguimento da astensofera durante a passagem da Junção Tríplice do Chile pela região de Pali Aike. / The southern of the South-American plate, today is the Chile and Argentina Patagonia region, was formed as a result of continental accretions since the Proterozoic.Currently, this region is characterized for a complex tectonic plates system, in which Nazca, Antartica and Scotia oceanic plates interact directly to the South-American continental plate by subduction and transcorrent process. Between Nazca and Antartica plate occurs the Chile Ridge, and the Chile Ridge subduction under the South-American plate creates the Chile Triple Junction and the upwelling of underlying asthenospheric mantle in this region. The Cenozoic alkali magamtism that occurs in Patagonia Argentina and Chilena hosts ultramafic mantle xenoliths (spinel- and garnet-peridotites). These xenoliths are extremely important to characterization and identification of the processes that occurred in the upper mantle underneath the Patagonia region. The Re-Os isotopic studies in Prahuaniyeu (41°20’09.4”S, 67°54’08.1”W), and Chenque (43°38’39.3”S, 68°56’22”W) xenoliths, in north Patagonia Argentina, suggests the Prahuaniyeu lithosphere (TRD ~ 1.69 Ga) were formed previously to Chenque (TRD ~ 0.71 Ga). Rb-Sr data show high 87Sr/86Sr ratio (Prahuaniyeu: 0.7037 to 0.7041; Chenque: 0.7037 to 0.7086), suggesting interactions with subduction plate dehydration related fluids. Trough this data, and geochemistry data, the sucontinental lithospheric mantle underneath the north Patagonia region suffered two metasomatic events: one related to the OIB-like melt/fluids from slabs derived by ancient subductions; and another related to the fluids derived from the current subducted plate (Nazca) dehydration, characterized by the chalcophiles enrichment. Peridotites from Laguna Timone (52°01’39” S, 70°12’53” W), in the Pali Aike Volcanic Field, southern Patagonia Chilena region, also shows expressive enrichment in chalcophile elements suggesting metasomatism by fluids from currently subduction (Antartica plate). Another kind of metasomatism occurs in subcontinental lithospheric mantle underneath Pali Aike due the glimmerite occurrence, hydrated minerals (phlogopite and pargasite) in peridotites and similarities with peridotites that suffered metasomatism by asthenospheric melts (Manzaz, Argelia peridotites and Vitim Volcanic Field, Baikal, Siberia peridotites), with low Ba/Nb, Ba/La and U/Nb. All these carachteristics suggest that lithosphere suffered interactions between asthenosphere-lithosphere due upwelling of underlying asthenospheric mantle when the Chile Triple Junction was on the same latitude of Pali Aike.
|
9 |
Controle de mudanças estruturais sob altas pressões e altas temperaturas da esmectita saturada em potássioCarniel, Larissa Colombo January 2013 (has links)
O manto litosférico é depletado em elementos incompatíveis como potássio, rubídio e estrôncio, confinado sob altas condições de pressão e caracterizado por uma composição e mineralogia específicas: espinélios anidros e/ou granada lherzolitos e harzburgitos. Esta região pode ser hidratada e enriquecida em elementos incompatíveis (ex. potássio) através de processos de subducção, onde a placa oceânica subductada leva consigo material pelágico composto de argilominerais e filossilicatos. A transferência de massa entre a placa subductada com os sedimentos e a cunha mantélica ocorre primeiramente através da liberação de fluidos aquosos gerados pela devolatilização de minerais hidratados. Neste contexto, a esmectita destaca-se como um dos mais importantes minerias responsáveis pelo enriquecimento do manto litosférico em água e elementos incompatíveis, quando sua estrutura é desestabilizada. Com o aumento da pressão e temperatura, esmectitas perdem sua água interlamelar, ao mesmo tempo em que se transformam em camadas mistas esmectita-ilita. Nestas condições de desidratação, e com o aumento da pressão, mudanças estruturais ocorrem e, havendo potássio disponível no sistema, o argilomineral evolui para uma mica muscovita. Considerando este contexto, o presente trabalho tem como objetivo verificar o comportamento estrutural da esmectita saturada em potássio modificando as variáveis pressão e temperatura: (1) sob pressão atmosférica em diferentes temperaturas (100º a 700ºC); (2) sob pressão de até 11.5 GPa sem temperatura - Diamond Anvil Cell (DAC); (3) sob diferentes pressões com aplicação de temperatura: 2.5GPa (400º a 700ºC) e 4.0GPa (200º a 700ºC). Os resultados das técnicas de análise de Difração de raios X, Microscopia Eletrônica de Varredura (MEV), Microscopia Eletrônica de Transmissão (MET) e Espectroscopia por Infravermelho (FTIR) sugerem que, sob uma pressão de 2.5 GPa, que é cerca de 75km de profundidade no manto, e a aproximadamente 500ºC, a esmectita transforma-se em muscovita, enquanto sob a pressão de 4.0 Gpa, equivalente a cerca de 120 km de profundidade, a mesma transformação ocorre a 400ºC. Estes resultados contribuem significativamente para o entendimento de como a desidratação do sedimento pelágico ocorre em um processo de subducção, bem como o comportamento da esmectita sob a influência do aumento de pressão e temperatura. / The lithospheric mantle is depleted regarding to incompatible elements as potassium, rubidium and strontium, confined under pressure conditions and characterized by a specific mineralogy and composition, basically as anhydrous spinel and/or garnet lherzolite and harzburgite. This region can be hydrated and enriched in incompatible elements (e.g. potassium) through subduction processes that bring pelagic material, composed of clay minerals and other phyllosilicates, together with the hydrated subducted oceanic slab. A mass transfer from the subducted slab plus sediments into the mantle wedge occurs primarily through the release of aqueous fluids produced by devolatilization of hydrated minerals. In this context, smectite stands out as one of the most important minerals responsible for enriching the lithospheric mantle with water and incompatible elements when its structure is destabilized. By pressure and temperature increasing smectite lose its interlayer water, at the same time that it transforms into a mixed-layer illite-smectite. In this condition of dehydration and with increasing pressure, structural changes occur and, having potassium available on the system, the clay mineral evolves into a muscovite mica. Considering this context, we verified the structural behavior of potassium saturated smectite modifying variables pressure and temperature: (1) under atmospheric pressure at different temperatures (100º to 700º C); (2) under pressure up 11.5 GPa without temperature - Diamond Anvil Cell (DAC); (3) under different pressures with temperature application: 2.5 GPa (400º to 700º C) and 4.0 GPa (200º to 700º C). The results of the analysis techniques of X-ray diffraction, Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and Infrared Spectroscopy (FTIR), suggest that under the pressure of 2.5 GPa, which is about 75km depth in the mantle, and at around 500ºC smectite transforms into muscovite, while under the pressure of 4.0 GPa, equivalent to around 120km depth, the same transformation occurs at 400ºC. These results contribute significantly to understanding how pelagic sediment dehydration occurs in a subduction process, as well as the behavior of smectite under the influence of increasing pressure and temperature.
|
10 |
Controle de mudanças estruturais sob altas pressões e altas temperaturas da esmectita saturada em potássioCarniel, Larissa Colombo January 2013 (has links)
O manto litosférico é depletado em elementos incompatíveis como potássio, rubídio e estrôncio, confinado sob altas condições de pressão e caracterizado por uma composição e mineralogia específicas: espinélios anidros e/ou granada lherzolitos e harzburgitos. Esta região pode ser hidratada e enriquecida em elementos incompatíveis (ex. potássio) através de processos de subducção, onde a placa oceânica subductada leva consigo material pelágico composto de argilominerais e filossilicatos. A transferência de massa entre a placa subductada com os sedimentos e a cunha mantélica ocorre primeiramente através da liberação de fluidos aquosos gerados pela devolatilização de minerais hidratados. Neste contexto, a esmectita destaca-se como um dos mais importantes minerias responsáveis pelo enriquecimento do manto litosférico em água e elementos incompatíveis, quando sua estrutura é desestabilizada. Com o aumento da pressão e temperatura, esmectitas perdem sua água interlamelar, ao mesmo tempo em que se transformam em camadas mistas esmectita-ilita. Nestas condições de desidratação, e com o aumento da pressão, mudanças estruturais ocorrem e, havendo potássio disponível no sistema, o argilomineral evolui para uma mica muscovita. Considerando este contexto, o presente trabalho tem como objetivo verificar o comportamento estrutural da esmectita saturada em potássio modificando as variáveis pressão e temperatura: (1) sob pressão atmosférica em diferentes temperaturas (100º a 700ºC); (2) sob pressão de até 11.5 GPa sem temperatura - Diamond Anvil Cell (DAC); (3) sob diferentes pressões com aplicação de temperatura: 2.5GPa (400º a 700ºC) e 4.0GPa (200º a 700ºC). Os resultados das técnicas de análise de Difração de raios X, Microscopia Eletrônica de Varredura (MEV), Microscopia Eletrônica de Transmissão (MET) e Espectroscopia por Infravermelho (FTIR) sugerem que, sob uma pressão de 2.5 GPa, que é cerca de 75km de profundidade no manto, e a aproximadamente 500ºC, a esmectita transforma-se em muscovita, enquanto sob a pressão de 4.0 Gpa, equivalente a cerca de 120 km de profundidade, a mesma transformação ocorre a 400ºC. Estes resultados contribuem significativamente para o entendimento de como a desidratação do sedimento pelágico ocorre em um processo de subducção, bem como o comportamento da esmectita sob a influência do aumento de pressão e temperatura. / The lithospheric mantle is depleted regarding to incompatible elements as potassium, rubidium and strontium, confined under pressure conditions and characterized by a specific mineralogy and composition, basically as anhydrous spinel and/or garnet lherzolite and harzburgite. This region can be hydrated and enriched in incompatible elements (e.g. potassium) through subduction processes that bring pelagic material, composed of clay minerals and other phyllosilicates, together with the hydrated subducted oceanic slab. A mass transfer from the subducted slab plus sediments into the mantle wedge occurs primarily through the release of aqueous fluids produced by devolatilization of hydrated minerals. In this context, smectite stands out as one of the most important minerals responsible for enriching the lithospheric mantle with water and incompatible elements when its structure is destabilized. By pressure and temperature increasing smectite lose its interlayer water, at the same time that it transforms into a mixed-layer illite-smectite. In this condition of dehydration and with increasing pressure, structural changes occur and, having potassium available on the system, the clay mineral evolves into a muscovite mica. Considering this context, we verified the structural behavior of potassium saturated smectite modifying variables pressure and temperature: (1) under atmospheric pressure at different temperatures (100º to 700º C); (2) under pressure up 11.5 GPa without temperature - Diamond Anvil Cell (DAC); (3) under different pressures with temperature application: 2.5 GPa (400º to 700º C) and 4.0 GPa (200º to 700º C). The results of the analysis techniques of X-ray diffraction, Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and Infrared Spectroscopy (FTIR), suggest that under the pressure of 2.5 GPa, which is about 75km depth in the mantle, and at around 500ºC smectite transforms into muscovite, while under the pressure of 4.0 GPa, equivalent to around 120km depth, the same transformation occurs at 400ºC. These results contribute significantly to understanding how pelagic sediment dehydration occurs in a subduction process, as well as the behavior of smectite under the influence of increasing pressure and temperature.
|
Page generated in 0.0738 seconds