• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 4
  • 2
  • 2
  • 1
  • Tagged with
  • 29
  • 29
  • 16
  • 10
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Analyses expérimentale et numérique du comportement de poutres à ouvertures d'âmes raidies / Experimental and numerical analyses of the behaviour of beams with stiffened web openings

Al-Dafafea, Taher 06 July 2018 (has links)
La présente thèse vise à caractériser le comportement mécanique à la ruine de poutres métalliques avec ouvertures, de formes et de tailles variables, renforcées ou non par raidisseurs. L’étude s’intéresse à des poutres de dimensions réalistes et s’appuie sur une combinaison de différentes approches : essais, modèles éléments finis et modèles analytiques. Les raidisseurs sont généralement utilisés pour corriger certaines faiblesses au niveau du comportement mécanique autour des ouvertures. Autour des ouvertures rectangulaires, ces raidisseurs, disposés verticalement ou horizontalement, ont fait l’objet de peu d’études scientifiques publiées. Généralement, le comportement des poutres à ouvertures d’âmes est considéré comme étant similaire à celui d’une poutre échelle (ou poutre Vierendeel) chargée aux noeuds. Cette hypothèse permet de considérer que les membrures de l’ouverture sont soumises à un moment fléchissant local bi-triangulaire sur la longueur de l’ouverture. Cependant, la distribution du moment fléchissant, et de ses contraintes axiales, le long d’une membrure peut s’avérer être plus complexe et dépend de la forme de l’ouverture (rectangulaire, hexagonale, circulaire, sinusoïdale ou quelconque), de la position de l’ouverture le long de la poutre et enfin, du type de chargement (concentré ou uniformément réparti). Plusieurs études numériques et expérimentales ont déjà été menées sur les poutres à ouvertures d’âmes et ont permis de développer différentes approches analytiques en vue de décrire leurs comportements. Cependant, ces modèles montrent certaines imprécisions ou insuffisances pour différents types et dimensions d’ouvertures notamment les ouvertures rectangulaires. Les travaux présentés dans cette thèse font le point sur les principaux modèles existants de calcul de résistance des poutres avec ouvertures d’âmes. Ils présentent notamment leurs avantages et limites. Pour conforter les descriptions basées sur les analyses bibliographiques, une campagne expérimentale est réalisée pour valider un modèle éléments finis développé dans le cadre de l’étude. Les essais s’appuient sur des tronçons de poutres de dimensions réalistes avec différentes configurations d’ouvertures isolées renforcées ou non par des raidisseurs. Les mesures autour de l’ouverture utilisent des jauges de déformation pour analyser le profil des contraintes et son évolution, au cours du chargement, dans différentes sections critiques. Les essais sont menés jusqu’à la ruine qui s’est développée généralement par une combinaison de comportement élasto-plastique et d’instabilité locale autour des ouvertures. Certaines ruines se sont produites par rupture en traction-cisaillement de l’acier dans des zones critiques. Les analyses numériques et expérimentales ont permis d’étudier l’influence de différentes conditions sur la distribution des contraintes, notamment axiales, au sein d’une membrure d’ouverture, en vue d’évaluer son potentiel de voilement local qui reste un phénomène complexe à appréhender. Elles ont permis aussi de comprendre le fonctionnement mécanique des ouvertures renforcées par des raidisseurs de différentes dimensions et positions. L’étude paramétrique menée, en utilisant le modèle éléments finis validé par essai, a permis d’évaluer la pertinence des hypothèses retenues dans les approches analytiques existantes. Ces analyses ont permis aussi de proposer un modèle analytique tenant compte du comportement d’ouvertures isolées avec ou sans raidisseurs. / The present thesis aims to characterize the mechanical behavior to failure of steel beams with openings, with variable shapes and sizes, reinforced or not by stiffeners. The study considers beams of realistic dimensions and combines different approaches: tests, finite element models and analytical models. The stiffeners are generally used to improve some weaknesses in the mechanical behavior around the openings. Around rectangular openings, these stiffeners, in vertical or horizontal arrangements, have been the subject of limited number of scientific publications. In general, the behavior of beams with web openings is considered similar to that of Vierendeel beams with loads applied at the nodes. This hypothesis allows to consider that each frame around the opening is characterized by a bi-triangular local bending moment along the frame elements. In fact, the bending moment distribution, and their resultant axial stresses, along a frame can be more complex and depends on the shape of the opening (rectangular, hexagonal, circular, sinusoidal or any), the position of the opening along the beam and finally, the type of loading (concentrated or uniformly distributed). Several numerical and experimental studies have been conducted on the beams with web openings and different analytical approaches have been developed to describe and predict the behavior of these beams. However, these models show some inaccuracies or inadequacies depending on the types and dimensions of openings including rectangular openings. The work presented in this thesis examines the main existing models predicting the resistance for beams with web openings. It shows their advantages and limits based on the existing but limited results. To obtain additional and specific results to be used in the comparisons and to validate a finite element model developed within the framework of the study, an experimental campaign is carried out. The tests are focused on beams of real dimensions with different configurations of isolated openings reinforced or not by stiffeners. The measurements around the opening use strain gauges to analyze the stress profile and its evolution, during loading, in different critical sections. The tests are carried out until failure generally characterized by a combination of elastic-plastic behavior and local instability around openings. Some final failures occurred by tensile-shear fracture of steel in some critical zones. Numerical and experimental analyzes are performed to study the influence of various conditions on the stresses distributions, in particular axial stresses, within the frames around the openings. The stress distribution is mainly observed to evaluate the local buckling potential that remains a complex phenomenon difficult to predict. The results are also analyzed to understand the mechanical behavior of the openings reinforced by stiffeners of different dimensions and positions. The parametric study conducted using the validated finite element model allows evaluating the relevance of the assumptions considered in the existing analytical approaches. These analyzes made it possible to propose an analytical model taking into-account the behavior of isolated openings with or without stiffeners.
22

二重鋼管型座屈拘束ブレースの繰り返し弾塑性挙動

加藤, 基規, Kato, Motoki, 葛西, 昭, Kasai, Akira, 馬, 翔, Ma, Xiang, 宇佐美, 勉, Usami, Tsutomu 03 1900 (has links)
No description available.
23

Behaviour and Design of Sandwich Panels Subject to Local Buckling and Flexural Wrinkling Effects

Pokharel, Narayan January 2003 (has links)
Sandwich panels comprise a thick, light-weight plastic foam such as polyurethane, polystyrene or mineral wool sandwiched between two relatively thin steel faces. One or both steel faces may be flat, lightly profiled or fully profiled. Until recently sandwich panel construction in Australia has been limited to cold-storage buildings due to the lack of design methods and data. However, in recent times, its use has increased significantly due to their widespread structural applications in building systems. Structural sandwich panels generally used in Australia comprise of polystyrene foam core and thinner (0.42 mm) and high strength (minimum yield stress of 550 MPa and reduced ductility) steel faces bonded together using separate adhesives. Sandwich panels exhibit various types of buckling behaviour depending on the types of faces used. Three types of buckling modes can be observed which are local buckling of plate elements of fully profiled faces, flexural wrinkling of flat and lightly profiled faces and mixed mode buckling of lightly profiled faces due to the interaction of local buckling and flexural wrinkling. To study the structural performance and develop appropriate design rules for sandwich panels, all these buckling failure modes have to be investigated thoroughly. A well established analytical solution exists for the design of flat faced sandwich panels, however, the design solutions for local buckling of fully profiled sandwich panels and mixed mode buckling of lightly profiled sandwich panels are not adequate. Therefore an extensive research program was undertaken to investigate the local buckling behaviour of fully profiled sandwich panels and the mixed mode buckling behaviour of lightly profiled sandwich panels. The first phase of this research was based on a series of laboratory experiments and numerical analyses of 50 foam-supported steel plate elements to study the local buckling behaviour of fully profiled sandwich panels made of thin steel faces and polystyrene foam core covering a wide range of b/t ratios. The current European design standard recommends the use of a modified effective width approach to include the local buckling effects in design. However, the experimental and numerical results revealed that this design method can predict reasonable strength for sandwich panels with low b/t ratios (< 100), but it predicts unconservative strengths for panels with slender plates (high b/t ratios). The use of sandwich panels with high b/t ratios is very common in practical design due to the increasing use of thinner and high strength steel plates. Therefore an improved design rule was developed based on the numerical results that can be used for fully profiled sandwich panels with any practical b/t ratio up to 600. The new improved design rule was validated using six full-scale experiments of profiled sandwich panels and hence can be used to develop safe and economical design solutions. The second phase of this research was based on a series of laboratory experiments and numerical analyses on lightly profiled sandwich panels to study the mixed mode buckling behaviour due to the interaction of local buckling and flexural wrinkling. The current wrinkling formula, which is a simple modification of the methods utilized for flat panels, does not consider the possible interaction between these two buckling modes. As the rib depth and width of flat plates between the ribs increase, flat plate buckling can occur leading to the failure of the entire panel due to the interaction between local buckling and wrinkling modes. Experimental and numerical results from this research confirmed that the current wrinkling formula for lightly profiled sandwich panels based on the elastic half-space method is inadequate in its present form. Hence an improved equation was developed based on validated finite element analysis results to take into account the interaction of the two buckling modes. This new interactive buckling formula can be used to determine the true value of interactive buckling stress for safe and economical design of lightly profiled sandwich panels. This thesis presents the details of experimental investigations and finite element analyses conducted to study the local buckling behaviour of fully profiled sandwich panels and the mixed mode buckling behaviour of lightly profiled sandwich panels. It includes development and validation of suitable numerical and experimental models, and the results. Current design rules are reviewed and new improved design rules are developed based on the results from this research.
24

Behaviour and design of cold-formed steel compression members at elevated termperatures

Heva, Yasintha Bandula January 2009 (has links)
Cold-formed steel members have been widely used in residential, industrial and commercial buildings as primary load bearing structural elements and non-load bearing structural elements (partitions) due to their advantages such as higher strength to weight ratio over the other structural materials such as hot-rolled steel, timber and concrete. Cold-formed steel members are often made from thin steel sheets and hence they are more susceptible to various buckling modes. Generally short columns are susceptible to local or distortional buckling while long columns to flexural or flexural-torsional buckling. Fire safety design of building structures is an essential requirement as fire events can cause loss of property and lives. Therefore it is essential to understand the fire performance of light gauge cold-formed steel structures under fire conditions. The buckling behaviour of cold-formed steel compression members under fire conditions is not well investigated yet and hence there is a lack of knowledge on the fire performance of cold-formed steel compression members. Current cold-formed steel design standards do not provide adequate design guidelines for the fire design of cold-formed steel compression members. Therefore a research project based on extensive experimental and numerical studies was undertaken at the Queensland University of Technology to investigate the buckling behaviour of light gauge cold-formed steel compression members under simulated fire conditions. As the first phase of this research, a detailed review was undertaken on the mechanical properties of light gauge cold-formed steels at elevated temperatures and the most reliable predictive models for mechanical properties and stress-strain models based on detailed experimental investigations were identified. Their accuracy was verified experimentally by carrying out a series of tensile coupon tests at ambient and elevated temperatures. As the second phase of this research, local buckling behaviour was investigated based on the experimental and numerical investigations at ambient and elevated temperatures. First a series of 91 local buckling tests was carried out at ambient and elevated temperatures on lipped and unlipped channels made of G250-0.95, G550-0.95, G250-1.95 and G450-1.90 cold-formed steels. Suitable finite element models were then developed to simulate the experimental conditions. These models were converted to ideal finite element models to undertake detailed parametric study. Finally all the ultimate load capacity results for local buckling were compared with the available design methods based on AS/NZS 4600, BS 5950 Part 5, Eurocode 3 Part 1.2 and the direct strength method (DSM), and suitable recommendations were made for the fire design of cold-formed steel compression members subject to local buckling. As the third phase of this research, flexural-torsional buckling behaviour was investigated experimentally and numerically. Two series of 39 flexural-torsional buckling tests were undertaken at ambient and elevated temperatures. The first series consisted 2800 mm long columns of G550-0.95, G250-1.95 and G450-1.90 cold-formed steel lipped channel columns while the second series contained 1800 mm long lipped channel columns of the same steel thickness and strength grades. All the experimental tests were simulated using a suitable finite element model, and the same model was used in a detailed parametric study following validation. Based on the comparison of results from the experimental and parametric studies with the available design methods, suitable design recommendations were made. This thesis presents a detailed description of the experimental and numerical studies undertaken on the mechanical properties and the local and flexural-torsional bucking behaviour of cold-formed steel compression member at ambient and elevated temperatures. It also describes the currently available ambient temperature design methods and their accuracy when used for fire design with appropriately reduced mechanical properties at elevated temperatures. Available fire design methods are also included and their accuracy in predicting the ultimate load capacity at elevated temperatures was investigated. This research has shown that the current ambient temperature design methods are capable of predicting the local and flexural-torsional buckling capacities of cold-formed steel compression members at elevated temperatures with the use of reduced mechanical properties. However, the elevated temperature design method in Eurocode 3 Part 1.2 is overly conservative and hence unsuitable, particularly in the case of flexural-torsional buckling at elevated temperatures.
25

Critérios normativos sobre influência da relação Aw/Af e esbeltez de alma no cálculo da resitência à flexão de vigas esbeltas em elementos de estruturas de aço. / Normative criteria of influence of the Aw / Af and slenderness of soul in the calculation of the resistance to bending of beams slim in elements of steel structures.

FERNANDES, Rodrigo 01 October 2007 (has links)
Made available in DSpace on 2014-07-29T15:03:35Z (GMT). No. of bitstreams: 1 pre-textuais Rodrigo Fernandes.pdf: 349523 bytes, checksum: 27a5e6d7df167303c662872391301d36 (MD5) Previous issue date: 2007-10-01 / This work contains a theoretical analysis of the behavior of plate girders. A plate girder has been calculated based on the criteria of the American standard Manual of Steel Construction Load and Resistance Factor Design (AISC, 1994), and checked by the Brazilian standard NBR 8800: Projeto e execução de estruturas de aço de edifícios (método dos estados limites) (ABNT, 1986), the revision project of the Brazilian standard Projeto de Revisão da NBR 8800: Projeto e execução de estruturas de aço e de estruturas mistas aço-concreto de edifícios (ABNT, 2003), the revision project of the Brazilian standard Projeto de Revisão da NBR 8800: Projeto de estruturas de aço e de estruturas mistas de aço e concreto de edifícios (ABNT, 2007) and the European standard Eurocode 3: Design of steel structures Part 1.1: General rules and rules for buildings (CEN, 1992). PFEIL (1989) has calculated a plate girder by using the Brazilian standard NBR 8800/86. The calculated dimension have been checked by the mentioned standards. NARAYANAN (1992 apud OWENS, KNOWLES E DOWLING, 1992) has dimensioned a plate girder by using the British standard BS 5950: Structural use of steelwork in building. Part 1: Code of practice for design in simple and continuous construction: hot rolled sections (BSI, 1990), which has also been checked by the mentioned standards. Furthermore, theoretical analyses related to the calculus of plate girders presented by many authors have been considered. The main goal is to assess the criteria utilized by the standards for the calculus of plate girders. From the obtained results, for the checked girders, by the standards and related theories, a comparative analysis among the utilized criteria by the standards has been made. The reached conclusion is that the Brazilian standard and its revision projects has identical criteria compared to the American standard for the calculus of plate girders. The European standard presents slightly different criteria compared to the American standard; however, both provide close results one compared to another. The theories utilized have also provided close results from those obtained by the standards. / Neste trabalho é feita uma análise teórica sobre o comportamento de vigas esbeltas. Uma viga esbelta foi dimensionada com base nos critérios da norma americana Manual of Steel Construction Load and Resistance Factor Design (AISC, 1994), e depois verificada pela norma brasileira NBR 8800: Projeto e execução de estruturas de aço de edifícios (método dos estados limites) (ABNT, 1986), pelo projeto de revisão da norma brasileira Projeto de Revisão da NBR 8800: Projeto e execução de estruturas de aço e de estruturas mistas aço-concreto de edifícios (ABNT, 2003), pelo projeto de revisão da norma brasileira Projeto de Revisão da NBR 8800: Projeto de estruturas de aço e de estruturas mistas de aço e concreto de edifícios (ABNT, 2007) e pela norma européia Eurocode 3: Design of steel structures Part 1.1: General rules and rules for buildings (CEN, 1992). PFEIL (1989) dimensionou uma viga esbelta utilizando a norma brasileira NBR 8800/86. As dimensões calculadas foram verificadas pelas normas citadas. NARAYANAN (1992 apud OWENS, KNOWLES E DOWLING, 1992) dimensionou uma viga esbelta utilizando a norma britânica BS 5950: Structural use of steelwork in building. Part 1: Code of practice for design in simple and continuous construction: hot rolled sections (BSI, 1990), a qual foi também verificada pelas normas citadas. Também foram consideradas análises teóricas relativas ao cálculo de vigas esbeltas apresentadas por diversos autores. O objetivo principal é avaliar os critérios utilizados pelas normas para o cálculo de vigas esbeltas. A partir dos resultados obtidos, para as vigas analisadas, pelas normas e pelas teorias existentes, foi feita uma análise comparativa entre os critérios utilizados pelas normas. A conclusão a que se pôde chegar é que a norma brasileira e seus projetos de revisão apresentam critérios idênticos aos da norma americana para o cálculo de vigas esbeltas. A norma européia apresenta critérios um pouco diferenciados dos critérios da norma americana, mas fornecem resultados aproximados entre si. As teorias utilizadas também forneceram resultados aproximados dos resultados obtidos pelas normas.
26

[en] FAILURE MODES AND STRENGTH PREDICTION OF LATERALLY BRACED LITZKA-TYPE STEEL CASTELLATED BEAMS / [pt] MODOS DE FALHA E PREVISÃO DA RESISTÊNCIA DE VIGAS CASTELADAS DE AÇO DO TIPO LITZKA TRAVADAS LATERALMENTE

JOAO JOSE VENEL BRAGA 19 April 2022 (has links)
[pt] As vigas casteladas estão sujeitas aos modos de falha devido a plastificação (plastificação do tê e mecanismo de Vierendeel) e flambagem (flambagem do montante da alma e flambagem do tê). O tê é a parte da seção transversal na localização da abertura e o montante da alma a região entre duas aberturas adjacentes. Esses modos de falha são tratados no manual do AISC (Design Guide 31) de vigas casteladas como modos individuais. Nesse manual, os esforços locais no tê são calculados através de uma analogia com a viga Vierendeel e a interação entre os modos de falha nessa região são considerados a partir de uma equação de interação. Embora estas verificações estejam coerentes, esse dimensionamento pode ser demasiadamente conservador por não considerar outros fatores como, por exemplo, a resistência pós-crítica. Todavia, estes fatores só podem ser considerados a partir de análises não lineares incluindo a não linearidade do material, não linearidade geométrica e imperfeição geométrica inicial. O presente trabalho tem por objetivo investigar os modos de falha das vigas casteladas do tipo Litzka travadas ao longo do comprimento, descartando assim, modos de falha por flambagem lateral com torção, usando o método dos elementos finitos. Neste trabalho, são avaliadas a influência da interação entre os elementos constituintes da seção transversal (isto é, mesa e alma), a interação entre modos de falha individuais e a reserva de resistência pós-crítica. Foi desenvolvida uma equação semi-analítica relacionando os parâmetros não dimensionais da seção transversal e a razão momento/cortante. Desse modo, foi possível classificar uma dada viga castelada, com geometria e carregamento, quanto ao seu comportamento dominado pela flexão (viga longa) ou pelo cisalhamento (viga curta). Em conjunto com uma esbeltez não dimensional (dependendo da carga crítica e da carga de plastificação) inspirada no Método da Resistência Direta. A partir destes parâmetros foi possível definir um mapa, que permitiu ordenar os modos de falha em regiões predeterminadas. Finalmente, foi realizado um estudo paramétrico, variando a geometria da viga castelada e considerando diferentes razões momento/cortante. Com base nesses resultados foi proposta uma equação do tipo Winter para obter a capacidade a flexão e ao cisalhamento de vigas casteladas com geometrias usuais. / [en] Castellated beams may experience failure modes associated to plastification (plastification of the tee section and Vierendeel mechanism) and buckling (webpost buckling and tee torsional buckling). The term tee is used to refer to the section described by the portion of the web and the flange where there is an opening and web-post is the portion of the section between two adjacent openings. The AISC design Guide 31 addresses each of these modes separately. There, the local forces in the tee section are calculated by an analogy to a Vierendeel beam and the interaction between the failure modes in the tee section is accounted for by an interaction equation. Although this methodology is consistent, it can be excessively conservative because it does not account for other factors, such as, the post-buckling resistance. However, these factors can only be assessed when nonlinear simulations including both material and geometry nonlinearities and initial imperfection are considered. The present work aims to investigate the failure modes of laterally braced Litzca-type castellated beam using the finite element method. In this work, aspects such as mutual influence of the constituent parts to the behavior (i.e., flange and web), interaction of individual modes and post-buckling reserve of strength were evaluated. A semi analytical equation based on geometrical non dimensional parameters and on the ratio of moment and shear load was developed. This way, a given castellated beam could be classified by its geometry and load in relation to the flexure (long beam) or shear behavior (short beam). In addition, together with a non-dimensional slenderness (depending on the plastic and buckling loads) inspired in the Direct Strength Method, a map was created that allowed the organization of the failure modes in pre-defined regions. Finally, a parametric study was carried out varying the geometry of the castellated beam and considering different ratios of moment to shear loads. Based on these results, a Winter-type equation was proposed to assess the load capacity of beams with typical geometries.
27

[en] A NUMERICAL INVESTIGATION ON THE INTERACTION BETWEEN GLOBAL AND LOCAL BUCKLING MODES IN CASTELLATED BEAMS / [pt] INVESTIGAÇÃO NUMÉRICA SOBRE A INTERAÇÃO ENTRE MODOS DE FLAMBAGEM GLOBAIS E LOCAIS EM VIGAS CASTELADAS

FELIPE DA COSTA TOURINHO T SOUZA 02 June 2020 (has links)
[pt] O presente trabalho visa investigar a interação entre a flambagem lateral com torção e a flambagem local do tê comprimido em vigas casteladas. O método dos elementos finitos (MEF) é usado para realizar análises paramétricas de vigas Litzkas sujeitas a flexão pura e considerando combinações da razão entre espessura e comprimento das mesas e alma, além do comprimento destravado. Para considerar a possibilidade de aço com diferentes resistências ao escoamento, esbeltezes adimensionais são utilizadas para prever o comportamento da estrutura de maneira compreensiva. As respostas de vigas com diferentes combinações de esbeltezes são comparadas e a resistência relativa de cada uma delas é discutida. A influência das imperfeições iniciais na capacidade de resistência é avaliada. Os momentos últimos calculados a partir do MEF são comparados com aqueles calculados de acordo com as normas de dimensionamento para vigas casteladas, mostrando que esses podem superestimar ou subestimar as capacidades de resistência. Finalmente, uma abordagem com o método da resistência direta é testada para prever a resistência nominal à flexão. Através das análises feitas, conclui-se que o Design Guide subestima a resistência das geometrias analisadas, o método da resistência direta as superestima e as imperfeições iniciais têm influência no comportamento das vigas analisadas. / [en] The present work aims to investigate the interaction between lateral torsional buckling and compression tee local buckling in castellated beams. The finite element method (FEM) is used to perform a parametric study for Litzka-beams subject to pure bending moment considering combinations of flange-to-web width and thickness ratios and unbraced lengths. To account for the possibility of different yield strengths, non-dimensional local and global slenderness are used to assess the behavior in a comprehensive manner. The responses for beams having different combinations of slendernesses are compared and the relative strengths are discussed. The influence of the initial imperfections on the strength capacity is evaluated. The FEM ultimate bending moments are compared to those calculated according to the current design recommendations for castellated beams, showing that these may either over or underpredict actual capacities. Finally, a direct strength method approach is tested for the prediction of the nominal bending strength. Through the performed analyses it was concluded that the Design Guide underestimate the relative strengths of the analyzed geometries, while the direct strength method overestimated them and the initial imperfections influence the structural behavior of the analyzed beams.
28

Reduced stress method for steel in class 4 cross-sections : Evaluation of the reduced stress method for a railway bridge / Reducerad spänning för stål i tvärsnittsklass 4 : Utvärdering av metoden reducerad spänning för en järnvägsbro

Badrous, Therese, Lund, Ebba January 2021 (has links)
The effective cross-section method, also called reduced cross-section method is generally used for steel in class 4 cross-sections in considering local buckling. This method is a bit complicated and time consuming, which often leads to engineers not using profiles in class 4 cross-sections. The reduced stress method is an alternative method for handling slender steel cross-sections. These two methods are described in the Eurocode, of which the latter is less described. The national annex states that the reduced stress method should not be used, however, without explanation to the general recommendation. This study is a comparison of the two different methods and is intended to provide a better understanding of the reduced stress method. The calculation process and design for steel profiles in class 4 cross-sections can in this way become more efficient. This is done by determining when it is most profitable to use the reduced stress method instead of the effective cross-section method. Thus, can the use of profiles in class 4 cross-sections become a more obvious choice in the industry. This study considered a simply supported I-beam in an open railway bridge exposed to bending moment where the same conditions were investigated for each method. The effective crosssection method is implemented by reducing the cross-sectional area and was calculated manually. In the reduced stress method, it is the yield stress that is reduced. The reduced stress method was analyzed both through FEM and manual calculations in this study. The result showed that the reduced stress method performed through FEM gave a similar result as the effective cross-section method, which makes it an appealing method. The reduced stress method with manual calculation, however, gave a more conservative result. These methods are relativelydifferent and recommendations for each method are presented in this report. / Idag behandlas ståltvärsnitt i tvärsnittklass 4 generellt med hjälp av metoden effektivt tvärsnitt för att beakta lokal buckling. Metoden är en aning komplicerad och tidskrävande, vilket leder till att konstruktörer överlag inte använder profiler i tvärsnittsklass 4. Reducerad spänning är en alternativ metod för hantering av slanka ståltvärsnitt. Dessa två metoder beskrivs i Eurokoden varav den sist nämnda mer kortfattat. I den nationella bilagan står det att metoden reducerad spänning ej bör användas dock utan motivering till det allmänna rådet. Studien är en jämförelse av de två olika metoderna och är ämnad till att ge en bättre förståelse av metoden reducerad spänning. Således kan beräkningsgången samt projektering för stålprofiler i tvärsnittsklass 4 effektiviseras. Detta genom att avgöra när det är mest lönsamt att använda reducerad spänning framför effektivt tvärsnitt. Följaktligen kan användning av profiler i tvärsnittsklass 4 bli ett mer självklart val i branschen. Denna studie omfattade en fritt upplagd I-balk i en öppen järnvägsbro utsatt för böjande moment där samma förutsättningar har undersökts för respektive metod. Effektivt tvärsnitt går ut på att reducera en tvärsnittsarea och har utförts via handberäkningar. I metoden reducerad spänning är det sträckgränsen som reduceras. I denna studie undersöktes reducerad spänningsmetoden via FEM samt handberäkningar. Resultatet påvisade att metoden reducerad spänning utförd via FEM gav ett liknande resultat som metoden effektivt tvärsnitt, vilket gör det till en attraktiv metod. Reducerad spänning via handberäkning gav dock ett mer konservativt resultat. Metoderna är relativt olika och rekommendationer för tillämpning av respektive metod presenteras i denna rapport.
29

Fire performance of cold-formed steel sections

Cheng, Shanshan January 2015 (has links)
Thin-walled cold-formed steel (CFS) has exhibited inherent structural and architectural advantages over other constructional materials, for example, high strength-to-weight ratio, ease of fabrication, economy in transportation and the flexibility of sectional profiles, which make CFS ideal for modern residential and industrial buildings. They have been increasingly used as purlins as the intermediate members in a roof system, or load-bearing components in low- and mid-rise buildings. However, using CFS members in building structures has been facing challenges due to the lack of knowledge to the fire performance of CFS at elevated temperatures and the lack of fire design guidelines. Among all available design specifications of CFS, EN1993-1-2 is the only one which provided design guidelines for CFS at elevated temperatures, which, however, is based on the same theory and material properties of hot-rolled steel. Since the material properties of CFS are found to be considerably different from those of hot-rolled steel, the applicability of hot-rolled steel design guidelines into CFS needs to be verified. Besides, the effect of non-uniform temperature distribution on the failure of CFS members is not properly addressed in literature and has not been specified in the existing design guidelines. Therefore, a better understanding of fire performance of CFS members is of great significance to further explore the potential application of CFS. Since CFS members are always with thin thickness (normally from 0.9 to 8 mm), open cross-section, and great flexural rigidity about one axis at the expense of low flexural rigidity about a perpendicular axis, the members are usually susceptible to various buckling modes which often govern the ultimate failure of CFS members. When CFS members are exposed to a fire, not only the reduced mechanical properties will influence the buckling capacity of CFS members, but also the thermal strains which can lead additional stresses in loaded members. The buckling behaviour of the member can be analysed based on uniformly reduced material properties when the member is unprotected or uniformly protected surrounded by a fire that the temperature distribution within the member is uniform. However if the temperature distribution in a member is not uniform, which usually happens in walls and/or roof panels when CFS members are protected by plaster boards and exposed to fire on one side, the analysis of the member becomes very complicated since the mechanical properties such as Young’s modulus and yield strength and thermal strains vary within the member. This project has the aim of providing better understanding of the buckling performance of CFS channel members under non-uniform temperatures. The primary objective is to investigate the fire performance of plasterboard protected CFS members exposed to fire on one side, in the aspects of pre-buckling stress distribution, elastic buckling behaviour and nonlinear failure models. Heat transfer analyses of one-side protected CFS members have been conducted firstly to investigate the temperature distributions within the cross-section, which have been applied to the analytical study for the prediction of flexural buckling loads of CFS columns at elevated temperatures. A simplified numerical method based on the second order elastic – plastic analysis has also been proposed for the calculation of the flexural buckling load of CFS columns under non-uniform temperature distributions. The effects of temperature distributions and stress-strain relationships on the flexure buckling of CFS columns are discussed. Afterwards a modified finite strip method combined with the classical Fourier series solutions have been presented to investigate the elastic buckling behaviour of CFS members at elevated temperatures, in which the effects of temperatures on both strain and mechanical properties have been considered. The variations of the elastic buckling loads/moments, buckling modes and slenderness of CFS columns/beams with increasing temperatures have been examined. The finite element method is also used to carry out the failure analysis of one-side protected beams at elevated temperatures. The effects of geometric imperfection, stress-strain relationships and temperature distributions on the ultimate moment capacities of CFS beams under uniform and non-uniform temperature distributions are examined. At the end the direct strength method based design methods have been discussed and corresponding recommendations for the designing of CFS beams at elevated temperatures are presented. This thesis has contributed to improve the knowledge of the buckling and failure behaviour of CFS members at elevated temperatures, and the essential data provided in the numerical studies has laid the foundation for further design-oriented studies.

Page generated in 0.1754 seconds