Spelling suggestions: "subject:"cologique linéaire"" "subject:"cologique inéaire""
11 |
Concurrency, references and linear logic / Concurrences, Références et Logique LinéaireHamdaoui, Yann 25 September 2018 (has links)
Le sujet de cette thèse est l’étude de l’encodage des références et de la concurrence dans la Logique Linéaire. Notre motivation est de montrer que la Logique Linéaire est capable d’encoder des effets de bords, et pourrait ainsi servir comme une cible de compilation pour des langages fonctionnels qui soit à la fois viable, formalisée et largement étudiée. La notion clé développée dans cette thèse est celle de zone de routage. C’est une famille de réseaux de preuve qui correspond à un fragment de la logique linéaire différentielle, et permet d’implémenter différentes primitives de communication. Nous les définissons et étudions leur théorie. Nous illustrons ensuite leur expressivité en traduisant un λ-calcul avec concurrence, références et réplication dans un fragment des réseaux différentiels. Pour ce faire, nous introduisons un langage semblable au λ-calcul concurrent d’Amadio, mais avec des substitutions explicites à la fois pour les variables et pour les références. Nous munissons ce langage d’un système de types et d’effets, et prouvons la normalisation forte des termes bien typés avec une technique qui combine la réductibilité et une nouvelle technique interactive. Ce langage nous permet de prouver un théorème de simulation, et un théorème d’adéquation pour la traduction proposée. / The topic of this thesis is the study of the encoding of references andconcurrency in Linear Logic. Our perspective is to demonstrate the capabilityof Linear Logic to encode side-effects to make it a viable, formalized and wellstudied compilation target for functional languages in the future. The keynotion we develop is that of routing areas: a family of proof nets whichcorrespond to a fragment of differential linear logic and which implementscommunication primitives. We develop routing areas as a parametrizable deviceand study their theory. We then illustrate their expressivity by translating aconcurrent λ-calculus featuring concurrency, references and replication to afragment of differential nets. To this purpose, we introduce a language akin toAmadio’s concurrent λ-calculus, but with explicit substitutions for bothvariables and references. We endow this language with a type and effect systemand we prove termination of well-typed terms by a mix of reducibility and anew interactive technique. This intermediate language allows us to prove asimulation and an adequacy theorem for the translation
|
12 |
Linéarité : un outil analytique pour l'étude de la complexité et de la sémantique des langages de programmation / Linearity : an analytic tool in the study of complexity and semantics of programming languagesGaboardi, Marco 12 December 2007 (has links)
Dans la première partie, on propose un système de type pour le lambda-calcul, dans le style du calcul des séquents, nomme « Soft Type Assignment » (STA) qui est inspiré par la logique linéaire « soft ». STA a la propriété de réduction du sujet et est correct et complète pour les calculs en temps polynomial. Par la suite on propose un déduction naturelle, STA_N. Ce système est simple mais il a le désavantage que les variables dans le sujet peuvent être explicitement renommées. Pour résoudre ce problème, on propose le système STA_M, où les contextes sont des multi-ensembles, donc les règles pour renommer les variables peuvent être interdit. L’inférence de type pour STA_M ne semble pas décidable. On propose un algorithme qui pour chaque lambda-terme rend l’ensemble de contraintes que doivent être satisfait pour que le terme soit type. Pi est correct et complet. Ensuite on étend le lambda-calcul par des constantes booléennes et on propose le système STA_B. La particularité de STA_B est que la règle du conditionnel utilise les contextes de façon additive. Chaque programme de STA_B peut être exécuté, par une machine abstraite, en espace polynomial. De plus le système est aussi complet pour PSPACE. Dans la deuxième partie, on propose une restriction de PCF, nommée SlPCF. Ce langage est équipé avec une sémantique opérationnelle qui mélange l’appelle par nom et l’appelle par valeur et peut être interprèté en mode standard dans les espaces cohérents linéaires. SlPCF est complet pour les fonctions récursives, mais il n’est pas complet et donc il n’est pas fully abstract pour les espaces cohérents linéaires / In the first part, we propose, inspired by Soft Linear Logic, a type assignment system for lambda-calculus in sequent calculus style, named Soft Type Assignment (STA). STA enjoys the subject reduction property. and is correct and complete for polynomial time computations. Then, we propose a natural deduction named STA_N. While simple, STA_N has the disadvantage of allowing the explicit renaming of variables in the subject. To overcome to this problem, we propose another natural deduction system, named STA_M, where contexts are multisets, hence rules renaming variables can be avoided. The type inference for STA_M seems in general undecidable. We propose an algorithm Pi returning, for every lambda-term, a set of constraints that need to be satisfied in order to type the term. Pi is correct and complete. We extend the lambda-calculus by basic boolean constants and we propose the system STA_B. The peculiarity of STA_B is that the conditional rule treats the contexts in an additive way. Every STA_B program can be executed, through an abstract machine, in polynomial space. Moreover, STA_B is also complete for PSPACE. In the second part we propose a restriction of PCF, named SlPCF. The language is naturally equipped with an operational semantics mixing call-by-name and call-by-value parameter passing and it can be interpreted in linear coherence space in a standard way. SlPCF is recursive complete, but it is not complete, and thus not fully abstract, with respect to linear coherence spaces
|
13 |
Réflexion, calculs et logiques / Reflexion, computation and logicGodfroy, Hubert 06 October 2017 (has links)
Le but de cette thèse est de trouver des modèles de haut niveau dans lesquelles l'auto-modification s'exprime facilement. Une donnée est lisible et modifiable, alors qu'un programme est exécutable. On décrit une machine abstraite où cette dualité est structurellement mise en valeur. D'une part une zone de programmes contient tous les registres exécutables, et d'autre part une zone de données contient les registres lisibles et exécutables. L'auto-modification est permise par le passage d'un registre d'une zone à l'autre. Dans ce cadre, on donne une abstraction de l'exécution de la machine qui extrait seulement les informations d'auto-modification. Logiquement, on essaye de trouver une correspondance de Curry-Howard entre un langage avec auto-modification et un système logique. Dans ce but on construit une extension de lambda-calcul avec termes gelés, c'est à dire des termes qui ne peuvent se réduire. Ces termes sont alors considérés comme des données, et les autres sont les programmes. Notre langage a les propriétés usuelles du lambda-calcul (confluence). D'autre part, on donne un système de types dans lequel un sous ensemble des termes du langage peuvent s'exprimer. Ce système est inspiré de la Logique Linéaire, sans gestion des ressources. On prouve que ce système de types a de bonnes propriétés, comme celle de la réduction du sujet. Finalement, on étend le système avec les continuations et la double négation, dans un style à la Krivine / The goal of my Ph.D. is to finds high level models in which self-modification can be expressed. What is readable and changeable is a data, and a program is executable. We propose an abstract machine where this duality is structurally emphasized. On one hand the program zone beholds registers which can be executed, and on the other hand data zone contains readable and changeable registers. Self-modification is enabled by passing a data register into program zone, or a program register into data zone. In this case, we give an abstraction of executions which only extracts information about self-modifications: execution is cut into paths without self-modification. For the logical part, we tried to find a Curry-Howard correspondence between a language with self-modifications and logical world. For that we built an extension of lambda-calculus with frozen terms, noted <t>, that is, terms which cannot reduce. This terms are considered as data. Other terms are programs. We first prove that this language as expected properties like confluence. On the other hand, we found a type system where a subset of terms of this language can be expressed. Our type system is inspired by Linear Logic, without resources management. We prove that this system has good properties like subject reduction. We finally have extended the system with continuation and double negation. This extension can be expressed in a krivine style, using a machine inspired by krivine machine
|
14 |
SÉMANTIQUES ET SYNTAXES VECTORIELLES DE LA LOGIQUE LINÉAIRETasson, Christine 04 December 2009 (has links) (PDF)
Avec les espaces de finitude, Ehrhard a exhibé une sémantique de la logique linéaire contenant une opération de différentiation. Dans ce cadre, l'interprétation des formules est décomposable en séries de Taylor. Cette étude a engendré des syntaxes différentielles. Cette thèse de sémantique dénotationnelle prolonge ce travail par une exploration de sémantiques vectorielles de la logique linéaire, et contribue à l'étude sémantique et syntaxique de la formule de Taylor. La première partie aborde la sémantique. Nous présentons l'interprétation des constructions de la logique linéaire dans les espaces vectoriels munis d'une topologie linéarisée, les espaces de Lefschetz. Nous définissons une notion intrinsèque d'espaces de finitude, les espaces de Lefschetz finitaires. Nous caractérisons les espaces de Lefschetz réflexifs complets à l'aide de bornologies linéaires. Enfin, nous montrons que la décomposition de Taylor reste valide dans ces espaces. La seconde partie porte sur les syntaxes différentielles. La formule de Taylor syntaxique traduit un terme en une superposition de termes différentiels qui sont autant de possibilités d'exécutions. Comme l'ont montré Ehrhard et Regnier, les termes issus de cette traduction vérifient une relation de cohérence. Nous introduisons une sémantique totale qui capture cette relation. Puis, nous construisons une extension vectorielle du lambda-calcul, le calcul barycentrique, interprété par cette sémantique totale. Enfin, dans le cadre des réseaux différentiels, nous présentons un algorithme non déterministe qui permet de décider si un ensemble fini de réseaux différentiels provient de la traduction d'un réseau de la logique linéaire par la formule de Taylor syntaxique.
|
15 |
Géométrie de l'Interaction et Réseaux DifférentielsDe Falco, Marc 28 May 2009 (has links) (PDF)
La Géométrie de l'Interaction (GdI) de Girard est une sémantique des langage de programmations tenant compte de leur dynamique de réduction.<br />Dans un premier temps, on présente les réseaux d'interaction de Lafont comme une instance particulière de GdI. Puis, on définis un cadre général d'étude de la GdI à partir d'un ensemble de symboles et de règles d'interaction.<br />Dans un second temps, on introduit une notion de concision associée à la GdI et on montre dans quelle mesure cette notion fait du sens à l'aide d'une famille d'exemple basée sur les entiers de Church.<br />Dans un dernier temps, on présente les réseaux d'interaction différentiels d'Ehrhard et Regnier et on définit leur GdI. On montre que la théorie usuelle de Danos-Regnier est entièrement récupérée.
|
16 |
Sémantique des phases, réseaux de preuve et divers problèmes de décision en logique linéaire.Mogbil, Virgile 17 January 2001 (has links) (PDF)
La logique linéaire (LL) permet de prendre naturellement en compte la notion de ressource. Elle est ainsi très expressive : le plus petit fragment propositionnel est déjà NP-complet alors que le plus grand est indécidable car on peut y simuler les modèles de calculs usuels comme les machines à registres. La décidabilité du fragment multiplicatif exponentiel de LL (MELL) est un problème ouvert. Cette thèse établit la complétude de la sémantique des phases semi-linéaire pour le fragment de Horn de MELL. La prouvabilité dans ce dernier est équivalente à l'accessibilité dans les réseaux de Pétri. Ce résultat constitue une première étape vers l'éventuelle décidabilité de MELL (conjecture de Y.Lafont). Le chapitre suivant développe le codage du problème des circuits hamiltoniens où la notion de choix (qui est ici naturellement traduite par les connecteurs additifs) est gérée multiplicativement. Ce procédé pourrait être étendu à l'étude d'autres problèmes de théorie des graphes. On obtient ainsi une nouvelle preuve de la NP-complétude du fragment multiplicatif de la logique linéaire. C'est un travail réalisé en commun avec T.Krantz. Enfin, on donne un critère de correction quadratique pour les réseaux de preuves de la logique non-commutative de P.Ruet (qui contient la logique linéaire et la logique linéaire cyclique). Il permet de plus de traiter les réseaux de preuve avec coupures.
|
17 |
Logique, Réalisabilité et ConcurrenceBeffara, Emmanuel 06 December 2005 (has links) (PDF)
Cette thèse se consacre à l'application de techniques de réalisabilité dans le cadre de l'étude du sens calculatoire de la logique. Dans une première partie, nous rappelons le formalisme de la réalisabilité classique de Krivine, dans lequel nous menons ensuite une étude du contenu opérationnel de tautologies purement classiques. Cette exploration du sens calculatoire de la disjonction classique révèle des comportements riches, avec une forte intuition interactive, qui s'interprètent avantageusement comme des structures de contrôle typées. Afin de mieux comprendre la nature de ces mécanismes, nous définissons ensuite une technique de réalisabilité à la Krivine pour un modèle de calcul concurrent, dans le but d'obtenir une notion de constructivité qui ne soit plus fondée sur l'idée de fonction, mais sur celle de processus interactif. Le cadre ainsi obtenu donne une interprétation réellement concurrente de la logique linéaire dans un calcul de processus dérivé du pi-calcul, permettant d'appliquer au cas concurrent la méthode de spécification précédemment étudiée dans le cas séquentiel. Par la suite, l'étude des traductions de la logique classique vers la logique linéaire mène à reconstruire systématiquement des décompositions interactives du calcul fonctionnel, permettant ainsi de faire le lien au niveau logique entre les réalisabilités classique et concurrente. Dans une dernière partie, nous étudions plus en détail le mode de calcul issu des algèbres de processus, afin de comprendre son système d'ordonnancement. Cette étude mène à la définition d'un modèle de calcul plus géométrique qui permet une exploration formelle de la notion de causalité dans les calculs concurrents.
|
18 |
Méthode de recherche des scénarios redoutés pour l'évaluation de la sûreté de fonctionnement des systèmes mécatroniques du monde automobileKHALFAOUI, Sarhane 26 September 2003 (has links) (PDF)
Le nombre croissant des systèmes électroniques embarqués dans le secteur automobile a considérablement amélioré et diversifié les services rendus par le véhicule. Ces systèmes sont appelés systèmes mécatroniques. Ils intègrent une partie énergétique (mécanique, hydraulique ou électrique) commandée et contrôlée par un calculateur. Leur principal atout est la flexibilité logicielle dont dispose le concepteur pour implémenter de nouvelles fonctions. Toutefois, ceci a contribué à accroître leur complexité et à en diminuer la maîtrise, d'où la nécessité d'effectuer des études de Sûreté de Fonctionnement afin de garantir un bon niveau de sécurité. Par ailleurs, mener de telles études dès la phase de conception permet de diminuer les délais et les coûts de conception en détectant et en corrigeant au plus tôt les erreurs de conception. Actuellement, les études de sécurité prévisionnelle des systèmes automobiles sont réalisées par la méthode des Arbres de Défaillance. Or cette méthode est statique et ne permet pas de prendre en compte les phénomènes temporels liés à leur dynamique de fonctionnement et à leur aspect hybride. C'est dans ce contexte que des recherches sont menées en collaboration entre le groupe PSA Peugeot Citroën et le LAAS visant à développer une méthodologie d'aide à la conception de systèmes mécatroniques sûrs de fonctionnement. Mon projet de thèse se focalise sur l'analyse qualitative de la sécurité des systèmes mécatroniques en vue de l'obtention des scénarios redoutés. La connaissance de ces scénarios permet d'évaluer leurs probabilités d'occurrence et de valider les lois de reconfiguration pour orienter le choix des concepteurs quant aux différents types d'architectures possibles proposés pour le système. Nous avons développé une méthode de recherche des scénarios redoutés basée sur la modélisation préalable d'un système mécatronique sous la forme d'un Réseau de Petri et d'un ensemble d'équations différentielles. Cette modélisation hybride présente l'avantage de séparer clairement les aspects discrets et continus. Ceci nous permet une analyse logique (fondée sur la logique Linéaire) des causalités résultant des changements d'états. Grâce à cette analyse, il est possible à partir d'un état redouté de remonter les chaînes de causalité et de mettre ainsi en évidence tous les scénarios possibles conduisant à une situation critique. Chaque scénario est donné sous la forme d'un ordre partiel entre les événements nécessaires à l'apparition de l'état redouté. L'originalité de notre approche est qu'elle n'implique pas une énumération brutale et globale de tous les états accessibles du système. Au contraire elle permet de se focaliser sur le voisinage de l'état redouté en faisant une énumération locale d'états partiels. Autrement dit, nous ne considérons que les états des composants directement impliqués dans l'apparition de l'état redouté. Nous avons enfin élaboré un algorithme automatisant la recherche des scénarios redoutés et nous l'avons appliqué sur deux exemples simples de systèmes mécatroniques.
|
19 |
Analyse statique typée des propriétés structurelles des programmesAlberti, Francisco 27 May 2005 (has links) (PDF)
Dans cette thèse, on présente un cadre théorique général d'analyse statique pour l'inférence de propriétés `structurelles' ou d'`usage' des programmes. Le terme `structurel', emprunté à la théorie de la démonstration, suggère un rapport étroit avec la logique linéaire, où les règles structurelles de contraction et affaiblissement jouent un rôle important. Le problème de l'analyse statique consiste à trouver une traduction d'un langage source dans le style de PCF vers un langage comportant des annotations structurelles. On montre que l'on peut characteriser l'ensemble de traductions possibles comme des solutions d'un ensemble d'inequations appropriées. Plus particulièrement, on s'intéresse à la plus petite solution, qui correspond à la traduction la plus précise ou optimale. La plus grande partie de ce manuscrit de thèse est dédié à un seul cas d'étude, l'analyse linéaire, dont l'objectif est de déterminer les valeurs qui sont utilisées une seule fois. On decrit d'abord une version de l'analyse linéaire très simplifiée, en suite on introduise des extensions qui comportent des notions de sous-typage et du polymorphisme d'annotations, ce étant clé dans la pratique, car il permet à l'analyse de garder son pouvoir expressif en présence de modules compilés séparément.
|
20 |
Formalisation en logique linéaire du fonctionnement des réseaux de PetriGIRAULT, François 15 December 1997 (has links) (PDF)
En logique classique, la formalisation du fonctionnement des réseaux de Petri (RdP) se heurte à la pérennité de la vérité. En logique modale, elle impose la construction préalable du graphe des marquages accessibles. A contrario, la logique linéaire (LL) fondée par Girard permet de formaliser directement par des séquents prouvables purement propositionnels les relations d'accessibilité dans les RdP : toute transition apparaît comme une implication linéaire disponible ad libitum entre les propositions traduisant ses marquages d'entrée et de sortie. Pour approfondir cette formalisation, nous définissons comme primitives en LL les notions de ressource, d'action et de consommabilité/productibilité, analogues mais distinctes de celles de proposition, de déduction et de vérité/fausseté en logique classique. Nous développons une interprétation concrète pour tous les connecteurs linéaires en cohérence avec leurs propriétés syntaxiques. Nous présentons le connecteur « par » comme un opérateur de cumul disjoint d'exemplaires de ressources (dual du connecteur « fois » de cumul conjoint) et la négation linéaire « nil » comme un inverseur du sens du temps. Cette concrétisation montre les limites des formalisations existantes des RdP en LL ; nous les généralisons en traduisant chaque transition par une implication linéaire ordinaire, traitée comme une ressource périssable, dont tout exemplaire consommé correspond à une occurrence de franchissement. Ainsi, nous apportons une expression logique aux aspects primordiaux du fonctionnement des RdP : nous démontrons qu'une relation d'accessibilité par séquence de transitions équivaut à un séquent prouvable et que l'équation fondamentale est l'expression algébrique d'un corollaire du critère d'équilibrage en LL. Grâce à la combinatoire de tous les connecteurs linéaires, notre approche ouvre des perspectives d'analyse de relations complexes d'accessibilité comme celles de reprise après défa illance dans un système industriel.
|
Page generated in 0.0478 seconds