Spelling suggestions: "subject:"long bohort term demory"" "subject:"long bohort term amemory""
71 |
Federated Learning for Time Series Forecasting Using Hybrid ModelLi, Yuntao January 2019 (has links)
Time Series data has become ubiquitous thanks to affordable edge devices and sensors. Much of this data is valuable for decision making. In order to use these data for the forecasting task, the conventional centralized approach has shown deficiencies regarding large data communication and data privacy issues. Furthermore, Neural Network models cannot make use of the extra information from the time series, thus they usually fail to provide time series specific results. Both issues expose a challenge to large-scale Time Series Forecasting with Neural Network models. All these limitations lead to our research question:Can we realize decentralized time series forecasting with a Federated Learning mechanism that is comparable to the conventional centralized setup in forecasting performance?In this work, we propose a Federated Series Forecasting framework, resolving the challenge by allowing users to keep the data locally, and learns a shared model by aggregating locally computed updates. Besides, we design a hybrid model to enable Neural Network models utilizing the extra information from the time series to achieve a time series specific learning. In particular, the proposed hybrid outperforms state-of-art baseline data-central models with NN5 and Ericsson KPI data. Meanwhile, the federated settings of purposed model yields comparable results to data-central settings on both NN5 and Ericsson KPI data. These results together answer the research question of this thesis. / Tidseriedata har blivit allmänt förekommande tack vare överkomliga kantenheter och sensorer. Mycket av denna data är värdefull för beslutsfattande. För att kunna använda datan för prognosuppgifter har den konventionella centraliserade metoden visat brister avseende storskalig datakommunikation och integritetsfrågor. Vidare har neurala nätverksmodeller inte klarat av att utnyttja den extra informationen från tidsserierna, vilket leder till misslyckanden med att ge specifikt tidsserierelaterade resultat. Båda frågorna exponerar en utmaning för storskalig tidsserieprognostisering med neurala nätverksmodeller. Alla dessa begränsningar leder till vår forskningsfråga:Kan vi realisera decentraliserad tidsserieprognostisering med en federerad lärningsmekanism som presterar jämförbart med konventionella centrala lösningar i prognostisering?I det här arbetet föreslår vi ett ramverk för federerad tidsserieprognos som löser utmaningen genom att låta användaren behålla data lokalt och lära sig en delad modell genom att aggregera lokalt beräknade uppdateringar. Dessutom utformar vi en hybrid modell för att möjliggöra neurala nätverksmodeller som kan utnyttja den extra informationen från tidsserierna för att uppnå inlärning av specifika tidsserier. Den föreslagna hybrida modellen presterar bättre än state-of-art centraliserade grundläggande modeller med NN5och Ericsson KPIdata. Samtidigt ger den federerade ansatsen jämförbara resultat med de datacentrala ansatserna för både NN5och Ericsson KPI-data. Dessa resultat svarar tillsammans på forskningsfrågan av denna avhandling.
|
72 |
Human Gait Phase Recognition in Embedded Sensor SystemLiu, Zhenbang January 2021 (has links)
Gait analysis can improve our understanding of gait to improve medical diagnosis or treatment in clinical assessment. Studying the gait cycle in an embedded sensor system is essential for the detection of any abnormal walking pattern. This project aims to investigate several methods for gait phase recognition on embedded systems based on Hidden Markov Model (HMM) and Long short term memory (LSTM). This project proposes three methods, single HMM, multiple HMMs, and LSTM models, to identify the phase number in one gait. Single HMM has been constructed with the unit of gait via HMM learning. The corresponding phase number in the hidden state sequence can be selected for the observations via HMM decoding. Multiple HMMs have been constructed with the unit of phase instead of gait via HMM learning. The HMM evaluation can select the corresponding phase number in the hidden state sequence with the largest log- likelihood. Frame blocking and windowing function is also applied to evaluate these two methods. Estimation, validation, and forecast are implemented in the LSTM method as a benchmark. After comparing and evaluating the three methods for phase inference in terms of execution time, accuracy, and limitations, the method with multiple HMMs can provide satisfactory accuracy of gait phase number recognition in a relatively short time. It can be concluded that the multiple HMMs method may be more suitable for application in this phase inference scenario on the embedded sensor processing systems if the timing requirement is not so stringent. / Gånganalys kan förbättra vår förståelse för gång för att förbättra medicinsk diagnos eller behandling vid klinisk bedömning. Att studera gångcykeln i ett inbyggt sensorsystem är avgörande för detektering av onormalt gångmönster. Detta projekt syftar till att undersöka flera metoder för gångfasinferens på inbäddade system baserat på Hidden Markov Model (HMM) och Long short term memory (LSTM). I detta projekt har tre metoder, enstaka HMM, flera HMM och LSTM-modeller, föreslagits för att identifiera fasnumret i en gång. Enstaka HMM har konstruerats med gångenheten via HMM-lärande. Motsvarande fasnummer i den dolda tillståndssekvensen kan väljas för observationerna via HMM-avkodning. Flera HMM har konstruerats med fasenheten istället för gång via HMM-lärande. Motsvarande fasnummer i den dolda tillståndssekvensen kan väljas med störst logsannolikhet via HMM-utvärdering. Frame Blocking och Windowing-funktionen används också för att utvärdera dessa två metoder. Uppskattning, validering och prognos implementeras i LSTM-metoden som ett riktmärke. Efter att ha jämfört och utvärderat de tre metoderna för fasinferens när det gäller exekveringstid, noggrannhet och begränsningar kan metoden med flera HMM: er uppnå tillfredsställande noggrannhet för fasnummerigenkänning på relativt kort tid. Vi kan dra slutsatsen att den flera HMM-metoden kan vara mer lämplig för tillämpning i detta fasinferensscenario på de inbyggda sensorbehandlingssystemen om tidskravet inte är så strikt.
|
73 |
Prediction of Component Breakdowns in Commercial Trucks : Using Machine Learning on Operational and Repair History DataBremer, Einar January 2020 (has links)
The strive for cost reduction of services and repairs combined with a desire for increased vehicle reliability has led to the development of predictive maintenance programs. In maintenance plans, accurate forecasts and predictions regarding which components in a vehicle is in risk of a breakdown is bene_cial to obtain since this enables components to be predictively exchanged or serviced before they break down and cause unnecessary downtime. Previous works in data driven predictive maintenance models typically utilize customer and operational data to predict component wear trough regressive or classi_er models. In this thesis the possibilities and bene_ts associated with utilizing vehicle repair and service history data for trucks in a predictive model is investigated. The repair and service data is a time series of irregularly sampled visits to a service centre and is used in conjunction with operational data and chassis con_guration data collected by a truck manufacturer. To tackle the problem a Random Forest, a Neural Network as well as a Recurrent Neural Network model was tested on the various datasets. The Recurrent Neural Network model made it possible to utilize the entire vehicle repair time series data whereas the Random Forest model used a condensed form of the repair data. The Recurrent model proved to perform signi_cantly better than the Neural Network model trained on operational data however it was not proven signi_cantly better than a Random Forest model trained on the condensed form of repair data. A conclusion that can be drawn is that repair history data can increase the performance of a predictive model, however it is unclear if the time sequence plays a part or if a list of previously exchanged parts works equally well. / Strävan efter att reducera kostnader av reparationer och service samt att öka fordons pålitlighet har lett till utvecklingen av prediktiva underhållsprogram. Träffsäkra förutsägeleser och prediktioner kring vilka delar som riskerar att fallera möjliggör prediktiva utbytelser eller service av delar innan de går sönder. Tidigare arbeten i prediktivt underhåll använder sig vanligen av kunddata och operationell data för att generera en prediktion genom regressions eller klassificeringsmetoder. I det här examensarbetet utforskas möjligheterna och fördelarna med att använda verkstadsdata från lastbilar i en prediktiv modell. Verkstadsdatan består av en oregelbundet genererad tidsserie av besök till en serviceanläggning och används i kombination med operationell data samt chassiutförandedata. För att angripa problemet användes en Random Forest, en Neuronnäts samt en Recurrent (Återkommande) Neuronnätsmodell på de olika datakällorna. Recurrent Neuronnätsmodellen möjliggjorde användandet av kompletta tidserieverkstadsdatan och denna modell visade sig ge bäst resultat men kunde inte påvisas vara signifikant bättre än en Random Forest modell som tränades på en komprimerad variant av verkstadsdatan. En slutsats som kan dras av arbetet är att verkstadsdatan kan öka prestandan i en prediktiv model men att det är oklart om det är tidssekvensen av datat som ger ökningen eller om det fungerar lika bra med en lista över tidigare utbytta delar.
|
74 |
Binary Recurrent Unit: Using FPGA Hardware to Accelerate Inference in Long Short-Term Memory Neural NetworksMealey, Thomas C. 31 May 2018 (has links)
No description available.
|
75 |
Predicting the Temporal Dynamics of Turbulent Channels through Deep Learning / Predicering den Tids-Dynamiken i Turbulentakanaler genom DjupinlärningGiuseppe, Borrelli January 2021 (has links)
The interest towrds machine learning applied to turbulence has experienced a fast-paced growth in the last years. Thanks to deep-learning algorithms, flow-control stratigies have been designed, as well as tools to model and reproduce the most relevant turbulent features. In particular, the success of recurrent neural networks (RNNs) has been demonstrated in many recent studies and applications. The main objective of this project is to assess the capability of these networks to reproduce the temporal evolution of a minimal turbulent channel flow. We first obtain a data-driven model based on a modal decomposition in the Fourier domain (FFT-POD) on the time series sampled from the flow. This particular case of turbulent flow allows us to accurately simulate the most relevant coherent structures close to the wall. Long-short-term-memory (LSTM) networks and a Koopman-based framework (KNF) are trained to predict the temporal dynamics of the minimal channel flow modes. Tests with different configurations highlight the limits of the KNF method compared to the LSTM, given the complexity of the data-driven model. Long-term prediction for LSTM show excellent agreement from the statistical point of view, with errors below 2% for the best models. Furthermore, the analysis of the chaotic behaviour thorugh the use of the Lyapunov exponent and of the dynamic behaviour through Pointcaré maps emphasizes the ability of LSTM to reproduce the nature of turbulence. Alternative reduced-order models (ROMS), based on the identification of different turbulent structures, are explored and they continue to show a good potential in predicting the temporal dynamics of the minimal channel.
|
76 |
Stock Market Prediction With Deep LearningFatah, Kiar, Nazar, Taariq January 2020 (has links)
Due to the unpredictability of the stock market,forecasting stock prices is a challenging task. In this project,we will investigate the performance of the machine learningalgorithm LSTM for stock market prediction. The algorithmwill be based only on historical numerical data and technicalindicators for IBM and FORD. Furthermore, the denoising anddimension reduction algorithm, PCA, is applied to the stockdata, to examine if the performance of forecasting the stockprice is greater than the initial model. A second method, transferlearning, is applied by training the model on the IBM datasetand then applying it on the FORD dataset, and vice versa, toevaluate if the results will improve. The results show that whenthe PCA algorithm is applied to the dataset separately, and incombination with transfer learning, the performance is greater incomparison to the initial model. Moreover, the transfer learningmodel is inconsistent as the performance is worse for FORD inrespect to the initial model, but better for IBM. Thus, concerningthe results when forecasting stock prices using related tools, it issuggested to use trial and error to identify which of the modelsthat performs the optimally. / Att förutse aktiekurser är en utmanande uppgift. Detta beror på aktiemarknadens oförutsägbarhet. Därför kommer vi i detta projekt att undersöka prestandan för maskininlärnings algoritmen LSTMs prognosförmåga för aktie priser. Algoritmen baseras endast på historisk numerisk data och tekniska indikatorer for företagen IBM och FORD. Vidare tillämpas brus minskande och dimension reducerande algorithmen, PCA, på aktiedata för att undersöka om prestandan för att förutse aktie priser är bättre än den ursprungliga modellen. En andra metod, transfer learning, tillämpas genom att träna modellen på IBM data och sedan använda den på FORD data, och vice versa, för att utvärdera om resultaten kommer att förbättras. Resultaten visar, när PCA-algoritmen tillämpas på aktiedata separat, och i kombination med transfer learning är prestandan bättre jämfört med bas modellen. Vidare kan vi inte dra slutsatser om transfer learning då prestandan är sämre för FORD med avseende på bas modellen, men bättre för IBM. I hänsyn till resultaten så föreslås det att man tillämpar modellerna för att identifiera vilken som är mest optimal när man arbetar i ett relaterat ämnesområde. / Kandidatexjobb i elektroteknik 2020, KTH, Stockholm
|
77 |
Machine Learning for State Estimation in Fighter Aircraft / Maskininlärning för tillståndsestimering i stridsflygplanBoivie, Axel January 2023 (has links)
This thesis presents an estimator to assist or replace a fighter aircraft’s air datasystem (ADS). The estimator is based on machine learning and LSTM neuralnetworks and uses the statistical correlation between states to estimate the angleof attack, angle of sideslip and Mach number using only the internal sensorsof the aircraft. The model is trained and extensively tested on a fighter jetsimulation model and shows promising results. The methodology and accuracyof the estimator are discussed, together with how a real-world implementationwould work. The estimators presented should act as a proof of concept of thepower of neural networks in state estimation, whilst the report discusses theirstrengths and weaknesses. The estimators can estimate the three targets wellin a vast envelope of altitudes, speeds, winds and manoeuvres. However, thetechnology is quite far from real-world implementation as it lacks transparencybut shows promising potential for future development. / Det här examensarbetet presenterar en estimator för att hjälpa eller ersätta ettstridsflygplans luftdatasystem (ADS). Estimatorn är baserad på maskininlärningoch LSTM neurala nätverk och använder statistisk korrelation mellan tillstånd föratt uppskatta anfallsvinkeln, sidglidningsvinkel och Mach-tal endast med hjälpav flygplanets interna sensorer. Modellen är tränad och utförligt testad på ensimuleringsmodell för stridsflygplan och visar lovande resultat. Estimatornsmetodik och noggrannhet diskuteras, tillsammans med hur en implementeringi verkligheten skulle fungera. De presenterade estimatorerna bör fungera somett “proof of concept” för kraften hos neurala nätverk för tillståndsuppskattning,medan rapporten diskuterar deras styrkor och svagheter. Estimatorerna kanuppskatta de tre tillstånden väl i ett stort spektra av altituder, hastigheter, vindaroch manövrar. Tekniken är dock ganska långt ifrån en verklig implementeringeftersom den saknar transparens, men visar lovande potential för framtidautveckling.
|
78 |
Comparative Analysis of Machine Learning Algorithms for Cryptocurrency Price PredictionKurtagic, Leila January 2024 (has links)
As the cryptocurrency markets continuously grow, so does the need for reliable analytical tools for price prediction. This study conducted a comparative analysis of machine learning (ML) algorithms for cryptocurrency price prediction. Through a literature review, three common and reliable ML algorithms for cryptocurrency price prediction were identified: Long Short-Term Memory (LSTM), Random Forest (RF), and eXtreme Gradient Boosting (XGBoost). Utilizing the Bitcoin All Time History dataset from TradingView, the study assessed both the individual performance of each algorithm and the potential of ensemble methods to enhance predictive accuracy. The results reveal that the LSTM algorithm outperformed RF and XGBoost in terms of predictive accuracy according to the metrics Mean Absolute Error (MAE), Mean Squared Error (MSE), and Root Mean Squared Error (RMSE). Additionally, two ensemble approaches were tested: Ensemble 1, which enhanced the LSTM model with the combined predictions from RF and XGBoost, and Ensemble 2, which integrated predictions from all three models. Ensemble 2 demonstrated the highest predictive performance among all models, highlighting the advantages of using ensemble approaches for more robust predictions.
|
79 |
Decoding Emotions in Speech: A Deep Learning Approach Using Convolutional Neural Networks : master's thesisРизу, М. Р. У. И., Rizu, M. R. U. I. January 2024 (has links)
Работа предложила систему идентификации эмоций с использованием глубокого обучения. Исследование продвигает взаимодействие человека и компьютера, мониторинг психического здоровья, маркетинговые исследования, анализ настроений и подчеркивает необходимость нейронных сетей. Оно стремится построить модель, которая учится на основе сырой речи. Оно разработано с использованием модели CNN и LSTM, блок классификации использует блоки LSTM для захвата долгосрочных временных корреляций. Это происходит после того, как блок извлечения признаков использует одновременные CNN и MFCC. Эти методы гарантируют, что блок категоризации может точно отображать данные. Подготовка данных для обучения и тестирования модели прогнозирования эмоций на основе набора данных CREMA-D является значительной. Для оптимизации производительности нейронной сети метод включает разделение признаков и меток, кодирование, разделение набора данных, стандартизацию и изменение формы данных. Для упрощения и снижения сложности он исключает подходы к дополнению данных. Модель обучается и оценивается с использованием CREMA-D, набор данных содержит 7442 голосовых записи, представляющих различные эмоции. В исследовании принимают участие 84 мужчины и 43 женщины в возрасте от 20 до 74 лет. Средняя точность модели составляет 86,92% по результатам проверки. В будущем исследования могут быть сосредоточены на разработке приложений для идентификации эмоций в реальном времени и интеграции мультимодальных данных для повышения точности и надежности систем обнаружения эмоций. / The work proposed emotion identification system using deep learning. The research advances human-computer interaction, mental health monitoring, market research, sentiment analysis and emphasizes the necessity of neural networks. It’s seeking to construct a model that learns from raw speech audio. It’s developed using CNNs and LSTMs model, a classification block uses LSTM units to capture long-term temporal correlations. This happens after a feature extraction block uses imultaneous CNNs and MFCCs. These methods ensure the categorization block can accurately display data. Data preparation for training and testing a CREMA-D dataset-based emotion prediction model is considerable. To optimize neural network performance, the method includes feature-label separation, encoding, dataset splitting, standardization, and data reshaping. To simplify and reduce complexity, it excludes data augmentation approaches. The model is trained and evaluated using CREMA-D, dataset contains 7,442 voice recordings representing different emotions. There are 84 male and 43 female performers, with ages ranging from 20 to 74 years old. The model has an average accuracy of 86.92% across validation. In the future, research may focus on developing real-time emotion identification applications and integrating multimodal data to enhance the accuracy and robustness of emotion detection systems.
|
80 |
Analysis of cortical evoked auditory response detection in adults using machine learningBeerelli, Pranavi 13 December 2024 (has links) (PDF)
This study focuses on the use of machine learning (ML) techniques to automate the detection of Cortical Evoked Auditory Responses (CEARs), which are key in understanding how the auditory cortex processes sound stimuli. Traditionally, analyzing these auditory responses has relied on manual interpretation by audiologists, a process that can introduce variability and human error, particularly in complex cases. To address this challenge, the research utilizes advanced deep learning models, including Convolutional Neural Networks (CNNs), Long Short Term Memory (LSTM) networks, and Bidirectional LSTM (BiLSTM) architectures, to analyze Electroencephalography (EEG) data and classify the presence or absence of auditory responses automatically. By employing these models, the study demonstrates improved accuracy in detecting auditory responses, with the BiLSTM model achieving the highest accuracy of 90%. Additionally, the use of Grad-CAM visualizations enables better interpretability of the model's predictions, allowing for insights into the biological relevance of the EEG features the models focused on. The findings highlight the potential of ML techniques to enhance the efficiency and accuracy of auditory diagnostics, which can support audiologists in clinical decision-making. The research also paves the way for future developments, such as integrating these models into real-time EEG systems and expanding their use to other time-series data or domains like speech recognition or ECG analysis. This automation represents a significant step toward advancing auditory diagnostics and improving patient outcomes.
|
Page generated in 0.0603 seconds