Spelling suggestions: "subject:"lorentzgeometrie"" "subject:"porengeometrie""
1 |
On the singularitys set of Lorentzian almost Einstein structuresSchemel, Peter 22 June 2016 (has links)
Eine almost Einstein-Struktur (M,g,sigma) ist eine n-dimensionale zusammenhängende Mannigfaltigkeit M mit einer pseudo-riemannschen Metrik g und einer glatten Skalenfunktion sigma deren almost Einstein-Tensor A[g,sigma] (der spurfreie Anteil von Hess[g] sigma + sigma P[g], wobei P[g] den Schouten-Tensor bezeichnet) verschwindet. Sie verallgemeinert die Idee einer Einsteinmannigfaltigkeit in dem Sinne, dass die konform geänderte Metrik 1/sigma^2 g außerhalb der Nullstellenmenge Sigma = sigma^(-1)(0) eine Einstein-Metrik ist. Ziel dieser Doktorarbeit ist es, ein detailiertes Bild von Sigma in Lorentzsignatur (-+...+) zu erhalten. Teil dieser Arbeit ist zudem eine indexfreie Darstellung ausgewählter Resultate für konform kompaktifizierbare Einsteinmannigfaltigkeiten in Lorentzsignatur im Rahmen von almost Einstein-Strukturen. Diese Umformulierung wird dann benutzt, um eine Verallgemeinerung der konformen Wellengleichungen für beliebige gerade Dimensionen n = 2m > 4 vorzuschlagen. / An almost Einstein structure (M,g,sigma) is an n-dimensional connected manifold M equipped with a pseudo-Riemannian metric g and a scale factor sigma in C^infty(M) such that the almost Einstein tensor A[g,sigma] (the trace-free part of Hess[g] sigma + sigma P[g], with Schouten tensor P[g]) vanishes. It generalises the idea of an Einstein manifold in the way that 1/sigma^2 g is an Einstein metric away from the singularity set Sigma = sigma^(-1)(0). The purpose of this thesis is to get a detailed picture of Sigma in Lorentzian signature (-+...+). Part of this thesis is also an index-free survey of selected results on conformally compact Einstein manifolds in Lorentzian signature in the framework of almost Einstein structures. This reformulation is used to suggest a generalisation of the conformal wave equations to arbitrary even dimensions n = 2m > 4.
|
Page generated in 0.0722 seconds