• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

On the singularitys set of Lorentzian almost Einstein structures

Schemel, Peter 22 June 2016 (has links)
Eine almost Einstein-Struktur (M,g,sigma) ist eine n-dimensionale zusammenhängende Mannigfaltigkeit M mit einer pseudo-riemannschen Metrik g und einer glatten Skalenfunktion sigma deren almost Einstein-Tensor A[g,sigma] (der spurfreie Anteil von Hess[g] sigma + sigma P[g], wobei P[g] den Schouten-Tensor bezeichnet) verschwindet. Sie verallgemeinert die Idee einer Einsteinmannigfaltigkeit in dem Sinne, dass die konform geänderte Metrik 1/sigma^2 g außerhalb der Nullstellenmenge Sigma = sigma^(-1)(0) eine Einstein-Metrik ist. Ziel dieser Doktorarbeit ist es, ein detailiertes Bild von Sigma in Lorentzsignatur (-+...+) zu erhalten. Teil dieser Arbeit ist zudem eine indexfreie Darstellung ausgewählter Resultate für konform kompaktifizierbare Einsteinmannigfaltigkeiten in Lorentzsignatur im Rahmen von almost Einstein-Strukturen. Diese Umformulierung wird dann benutzt, um eine Verallgemeinerung der konformen Wellengleichungen für beliebige gerade Dimensionen n = 2m > 4 vorzuschlagen. / An almost Einstein structure (M,g,sigma) is an n-dimensional connected manifold M equipped with a pseudo-Riemannian metric g and a scale factor sigma in C^infty(M) such that the almost Einstein tensor A[g,sigma] (the trace-free part of Hess[g] sigma + sigma P[g], with Schouten tensor P[g]) vanishes. It generalises the idea of an Einstein manifold in the way that 1/sigma^2 g is an Einstein metric away from the singularity set Sigma = sigma^(-1)(0). The purpose of this thesis is to get a detailed picture of Sigma in Lorentzian signature (-+...+). Part of this thesis is also an index-free survey of selected results on conformally compact Einstein manifolds in Lorentzian signature in the framework of almost Einstein structures. This reformulation is used to suggest a generalisation of the conformal wave equations to arbitrary even dimensions n = 2m > 4.

Page generated in 0.0722 seconds