• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 3
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 35
  • 35
  • 10
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Ekonomisk Optimering av Systemtemperaturer i Radiatorsystem / Economy Optimization of System Temperatures in Radiator Systems

Öhlund, Martin January 2020 (has links)
Systemtemperaturer i värmesystem är en debatterad fråga i Sverige. Vid projektering av ett värmesystem har valet av systemtemperatur en avgörande roll för kostnaden av värmesystemet. Frågan vilka systemtemperaturer i värmesystemen som är det mest ekonomiska är viktig för att värmesystemet ska ha en fördel jämfört med konkurrenterna på marknaden. Historiskt sett har systemtemperaturerna i de svenska värmesystemen varit 80/60 medans idag är den vanligaste temperaturerna 55/45. Under 60-talet stod Östen Sandberg som förespråkare för ett nytänkande värmesystem kallat lågflödesystem (LF). Detta värmesystem använder sig av låga flöden i rörledningarna och stora temperaturskillnader på framledningen och returledningen. Förespråkare av dessa lågflödesystem hävdar att vid rätt användning kan en omjustering av det befintliga värmesystemet från ett högflödesystem (HF) till ett lågflödesystem drastigt reducera energiförbrukningen för fastigheten och samtidigt uppnå acceptabla inomhusförhållanden. Hade ett LFsystem kunnat konkurrera mot ett HFsystem ekonomiskt? För att undersöka detta kommer ett 55/45-HFsystem att användas som ursprungsfall vid jämförelser mellan HFsystem och LFsystem med olika systemtemperaturer för att utreda om ett 55/45-HFsystem är det mest ekonomiska värmesystemet. Studien visar många fördelar med 55/45-HFsystemet. Ett 55/45-HFsystem har relativt låga investeringskostnader vid projekteringen i jämförelse med de andra värmesystemen. En annan fördel är att detta värmesystem är kompatibelt med både fjärrvärme samt bergvärme vilket gör detta system passande som ett standardiserat värmesystem. Det mest ekonomiska värmesystemet är ett 80/60-HFsystem, vilket har lägre investeringskostnader för både radiatorer samt rörkostnader. Förespråkare av LFsystem hävdar att de reducerade flödena medför reducerade elkostnader för cirkulationspumpen vilket i längden gör LFsystemet energisnålare. Denna studie visar att de reducerade flödena och dess påverkan av energiförbrukningen hos cirkulationspumpen är förhållandevis så låga i jämförelse med de totala energiförbrukningen hos värmesystemet att den möjliga vinsten är försumbar. Däremot kan de reducerade flödena minska risken för en snedfördelad värmefördelning i fastigheten. LFsystemens stora nackdel är ökade investeringskostnader jämfört med HFsystemen. / The choice of temperatures in heating systems has long been a question for debate in Sweden. For the design engineer, the choice of system temperatures in a heating system has a decisive impact on the cost and in order to stay competitive on the market it is crucial to design the heating system as cost effective as possible. Historically the system temperature in Swedish heating systems has been 80/60 but today we see that the most common temperatures are 55/45. During the 1960´s Östen Sandberg became the leading advocate for a new type of heating system using a low flow principle (LF) for heat distribution. The LF principle requires a larger temperatur difference between the supply and return temperatures for the adequate heating. Advocates of the LF principle claims that large energy savings are possible if an exsisting high flow heating system (HF) undergoes an adjustment to a LF heating system. The question is how accurate is this claim? This article shows many advantages with the nowadays common 55/45-HFsystem. A 55/45-HFsystem has relatively low investment costs in comparison with other types of heating systems. Another advantage is the fact that the 55/45-HFsystem is compatible with both district heating and geothermal heat pump heating systems which makes this radiator system suitable as a standardized system. The most economical radiator system is the 80/60-HFsystem, which has a lower investment cost for both radiators and piping in comparison with a 55/45-HFsystem. The claim that LFsystems and the associated LF principle could result in a reduced energy cost for the heating system was not supported. This article shows that the energy savings that comes from the LF principle is negligible in comparison with the heating systems total energy cost. The LF principle could however reduce the risk of an uneven heating distribution in the building due to a more unpredictable regulation of the flow through the radiators. LFsystem disadvantage is an general overall larger investment cost in comparison with a HFsystem.
32

Green Anesthesia : Use of Inhalational Anesthetics and their Effect on our Climate / Miljövänlig Anestesi : Användning av inhalationsanestetika och dess påverkan på vårt klimat

Karchut, Sabina, Wedahl, Skylar January 2023 (has links)
This thesis has, commissioned by Dräger, an international company at the forefront of medical and safety technology, examined how the use of inhalational anesthetics affects the climate and environment. The purpose of this work is to examine how the Swedish healthcare sector currently works with inhalational anesthetics, how different anesthetic machines affect the emissions, as well as alternatives available to reduce anesthetic gases emissions. Climate change is a current issue in today’s society, but the impact of anesthetic gases on the climate is not widely known, despite their everyday use in the healthcare sector. Through data collection from two Swedish hospitals; Linköping University Hospital and Örebro University Hospital, an interview with medical and medical engineering staff, as well as a literature study the main question of the thesis could be answered; How do the most common anesthetic gases affect the environment? The results are presented in the form of diagrams showing the amount of anesthetic gas used in the aforementioned hospitals during surgeries. The results have been analyzed and discussed based on the research questions, and the different results from each hospital have been compared to each other. It can be seen that Dräger’s anesthesia machines have a relatively low consumption of sevoflurane, but it is impossible to draw any definitive conclusions due to lack of data, and lack of access to machines from other manufacturers. / Detta examensarbete har, på uppdrag av Dräger, ett internationellt företag i framkant inom medicin- och säkerhetsteknik, undersökt hur användning av inhalationsanestetika påverkar miljön. Målet med arbetet är att undersöka hur den svenska sjukvården för närvarande arbetar med inhalationsanestetika, hur olika anestesimaskiner påverkar utsläppen, samt alternativ som finns tillgängliga för att minska dessa utsläpp. Klimatförändringar är en aktuell fråga i dagens samhälle men påverkan av anestesigaser på klimatet är inte allmänt känt, trots att dessa används dagligen i hälsovården. Genom datainsamling från två svenska sjukhus; Linköpings Universitetssjukhus och Örebro Universitetssjukhus, intervjuer med medicinsk- och medicinteknisk personal, samt en litteraturstudie har arbetets problemställning besvarats; Hur påverkar de mest frekvent använda anestesigaserna miljön? Resultaten visar i diagramform hur mycket anestesi gas som använts i tidigare nämnda sjukhus under operationer. Resultaten har analyserats och diskuterats utifrån forskningsfrågorna, dessutom har de olika resultaten från respektive sjukhus jämförts med varandra. Det kan ses att Drägers anestesimaskiner har en relativt låg konsumtion av sevofluran, men brist på data samt brist på tillgång till maskiner från andra producenter gör det omöjligt att dra en konkret slutsats.
33

Le statut juridique de l'eau à l'épreuve des exigences environnementales / Water's legal status proof against environmental issues

Gudefin, Julia 09 December 2013 (has links)
Que l’on soit un simple promeneur ou un fin observateur, l’eau est présente partout. Pourtant, l’atout qu’elle représente pour les activités anthropiques cache souvent sa réalité environnementale, celle de son cycle. Ce constat se reflète dans l’appréhension juridique de l’eau laquelle est conçue comme un bien ou une chose. Cette qualification l’assigne donc à un statut juridique dont les manifestations révèlent la fonction utilitariste de la ressource. Or, l’émergence des problématiques environnementales confronte le statut juridique de l’eau à sa réalité physique. Ainsi, le droit et les exigences environnementales s’influencent réciproquement pour générer des règles protectrices de l’eau et des représentations juridiques du cycle hydrologique qui engendrent des évolutions du statut. Dès lors, ce dernier s’émancipe des catégories juridiques traditionnelles issues du droit des biens et s’habille d’une finalité protectrice dont les règles et les concepts, qui s’attachent à la fonction écologique de l’eau et à la réalité environnementale du cycle hydrologique, lui façonnent une autre condition juridique. / Along a simple stroll or through fine observations, you will always find water, wherever you go. However, the asset this resource represents for anthropogenic activities often hides its environmental reality, the one of its cycle. This is reflected in the legal definition of water which conceives it as property. This latter qualification assigns it to a judicial status which reveals the utilitarian function of the resource. Yet, the emergence of the environmental issues confronts water’s legal status to its tangible reality. Thus, the conflict between the law and water’s environmental demands makes way for protective regulations. Along with the hydrologic cycle’s legal representation, they both influence the evolution of water’s status. Consequently, the latter goes beyond property law traditional legal categories and arms itself with a protective purpose. Its rules and concepts are tied to the ecological function of water and to the environmental reality of the hydrologic cycle which shape yet another judicial condition for the water.
34

Net Positive Water

Ma, Billy January 2013 (has links)
‘Net Positive Water’ explores the capability of domestic architecture to combat the developing urban water problem. Urban intensification is contributing to the volatility of urban waters and the breakdown of the urban water cycle. Inhabitant water misuse and overconsumption is overwhelming aging municipal utilities, resulting in the decay of urban water quality. LEEDTM and The Living Building Challenge are recognized Green Building Guidelines prescribing sustainable site and building water standards. Case Studies of domestic Green Building projects will showcase water conservation to enable domestic water renewal. Net Zero Water Guidelines based on the Green Building Guidelines outline Potable and Non-Potable water use to achieve a sustainable volume of water demand at 70 litres per capita per day. Sustainable water practices are encouraged by utilizing domestic building systems to increase water value and water awareness. Time-of-Use and Choice-of-Use exposure for household water related tasks establish water savings through the use of best-performing water fixtures and appliances. Net Positive Water Guidelines will establish On-site and Building standards for sustainable harvesting and storage of water resources. Clean and Dirty water management will prescribe Passive design and Active mechanical processes to maintain best-available water quality in the urban domestic environment. Net Positive Water building typology will integrate urban inhabitation as a functional component of the urban water cycle to use, reuse, and renew water resources. The method will be tested using a Mid-rise Pilot project to deploy the necessary Passive and Active mechanisms to generate Net Positive Water quality through Net Zero Water sustainable water use. The pilot project is situated in Waterfront Toronto - The Lower Don Lands development to harness regional interests for water renewal and environmental revitalization.
35

Net Positive Water

Ma, Billy January 2013 (has links)
‘Net Positive Water’ explores the capability of domestic architecture to combat the developing urban water problem. Urban intensification is contributing to the volatility of urban waters and the breakdown of the urban water cycle. Inhabitant water misuse and overconsumption is overwhelming aging municipal utilities, resulting in the decay of urban water quality. LEEDTM and The Living Building Challenge are recognized Green Building Guidelines prescribing sustainable site and building water standards. Case Studies of domestic Green Building projects will showcase water conservation to enable domestic water renewal. Net Zero Water Guidelines based on the Green Building Guidelines outline Potable and Non-Potable water use to achieve a sustainable volume of water demand at 70 litres per capita per day. Sustainable water practices are encouraged by utilizing domestic building systems to increase water value and water awareness. Time-of-Use and Choice-of-Use exposure for household water related tasks establish water savings through the use of best-performing water fixtures and appliances. Net Positive Water Guidelines will establish On-site and Building standards for sustainable harvesting and storage of water resources. Clean and Dirty water management will prescribe Passive design and Active mechanical processes to maintain best-available water quality in the urban domestic environment. Net Positive Water building typology will integrate urban inhabitation as a functional component of the urban water cycle to use, reuse, and renew water resources. The method will be tested using a Mid-rise Pilot project to deploy the necessary Passive and Active mechanisms to generate Net Positive Water quality through Net Zero Water sustainable water use. The pilot project is situated in Waterfront Toronto - The Lower Don Lands development to harness regional interests for water renewal and environmental revitalization.

Page generated in 0.0324 seconds