• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 5
  • 1
  • 1
  • Tagged with
  • 14
  • 5
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Mechanisms involved in macrophage phagocytosis of apoptotic cells

Nilsson, Anna January 2009 (has links)
Efficient removal of apoptotic cells is critical for development, tissue remodelling, maintenance of homeostasis, and response to injury. Phagocytosis of apoptotic cells is mediated by many phagocytic receptors, soluble bridging molecules, and pro-phagocytic ligands on the surface of apoptotic cells. Macrophage phagocytosis in general is controlled by stimulatory and inhibitory mechanisms. An example of the latter mechanism is that mediated by the cell surface glycoprotein CD47, which by binding to the inhibitory receptor Signal Regulatory Protein alpha (SIRPα) on macrophages, is known to inhibit phagocytosis of viable host cells. The studies of the present thesis aimed at investigating possible changes to CD47 on apoptotic cells, which could influence their elimination by macrophages. The endoplasmatic protein calreticulin (CRT), in conjunction with Low density lipoprotein Receptorrelated Protein 1 (LRP1) on the phagocyte, can act as a receptor for collectin family members and mediate uptake of apoptotic cells. However, CRT itself was found to also be expressed on the surface of many viable cell types, and the CRT expression increased on apoptotic cells. By using antibodies to LRP1 or receptor‐associated protein (RAP), an antagonist blocking LRP1 ligand binding, we found that CRT on target cells could interact in trans with LRP1 on a phagocyte and stimulate phagocytosis. CD47 on the target cell inhibited LRP1‐mediated phagocytosis of viable cells (e.g. lymphocytes or erythtocytes), but not that of apoptotic cells. The inability of CD47 on apoptotic cells to inhibit LRP1‐ mediated phagocytosis could be explained in two ways: 1) Some apoptotic cell types (fibroblasts and neutrophils, but not Jurkat T cells) lost CD47 from the cell surface, or 2) CD47 is evenly distributed on the surface of viable cells, while it was redistributed into patches on apoptotic cells, segregated away from areas of the plasma membrane where the pro‐phagocytic ligands CRT and phoaphatidylserine (PS) were concentrated. Apoptotic murine thymocytes also showed a patched distribution of CD47, but no significant loss of the receptor. However, both PS‐independent and PS‐dependent macrophage phagocytosis of apoptotic CD47‐/‐ thymocytes was less efficient than uptake of apoptotic wild‐type (wt) thymocytes. This contradictory finding was explained by the fact that CD47 on apoptotic thymocytes did no longer inhibit phagocytosis, but rather mediated binding of the apoptotic cell to the macrophage. These effects could in part be dependent on the apoptotic cell type, since uptake of experimentally senescent PS+ wt or CD47‐/‐ erythrocytes by macrophage in vitro, or by dendritic cells (DC) in vivo, were the same. In vivo, PS+ erythrocytes were predominantly trapped by marginal zone macrophages and by CD8+ CD207+ DCs in the splenic marginal zone. DCs which had taken up PS+ erythrocytes showed a slight increase in expression levels of CD40, CD86 and MHC class II. These findings suggest that PS+ erythrocytes may be recognized by splenic macrophages and DCs in ways similar to that reported for apoptotic T cells. Uptake of senescent erythrocytes by DCs may serve as an important mechanism to maintain self‐tolerance to erythrocyte antigens, and defects in this function may facilitate development of AIHA. Glucocorticoids are used to treat inflammatory conditions and can enhance macrophage uptake of apoptotic cells. We found that the glucocorticoid dexamethasone time‐ and dose‐dependently stimulated macrophage cell surface LRP1 expression. Dexamethasone‐stimulated macrophages also showed enhanced phagocytosis of apoptotic thymocytes and unopsonized viable CD47‐/‐ erythrocytes. In summary, LRP1 can mediate phagocytosis of both viable and apoptotic cells by binding CRT on the target cell. Macrophage expression of LRP1 is increased by glucocorticoids, which could be one explanation for the anti‐inflammatory role of glucocorticoids. While CD47 on viable cells efficiently inhibits phagocytosis in macrophages, CD47 on apoptotic cells does not and can sometimes even promote their removal.
12

Neuropathological and behavioral alterations in two transgenic mouse models of Alzheimer´s disease

Meißner, Julius Nicolai 19 July 2016 (has links)
No description available.
13

Receptor mediated catabolism of plasminogen activators

Grimsley, Philip George, Medical Sciences, Faculty of Medicine, UNSW January 2009 (has links)
Humans have two plasminogen activators (PAs), tissue-type plasminogen activator (tPA) and urokinase-type plasminogen activator (uPA), which generate plasmin to breakdown fibrin and other barriers to cell migration. Both PAs are used as pharmaceuticals but their efficacies are limited by their rapid clearance from the circulation, predominantly by parenchymal cells of the liver. At the commencement of the work presented here, the hepatic receptors responsible for mediating the catabolism of the PAs were little understood. tPA degradation by hepatic cell lines was known to depend on the formation of binary complexes with the major PA inhibitor, plasminogen activator inhibitor type-1 (PAI-1). Initial studies presented here established that uPA was catabolised in a fashion similar to tPA by the hepatoma cell line, HepG2. Other laboratories around this time found that the major receptor mediating the binding and endocytosis of the PAs is Low Density Lipoprotein Receptor-related Protein (LRP1). LRP1 is a giant 600 kDa protein that binds a range of structurally and functionally diverse ligands including, activated α2 macroglobulin, apolipoproteins, β amyloid precursor protein, and a number of serpin-enzymes complexes, including PA??PAI-1 complexes. Further studies for the work presented here centred on this receptor. By using radiolabelled binding assays, ligand blots, and Western blots on cultured cells, the major findings are that: (1) basal LRP1 expression on HepG2 is low compared to a clone termed, HepG2a16, but appears to increase in long term culture; (2) a soluble form of LRP1, which retains ligand-binding capacity, is present in human circulation; (3) soluble LRP1 is also present in cerebral spinal fluid where its role in neurological disorders such as Alzheimer??s disease is a developing area of interest; and (4) the release of LRP1 is a mechanism conserved in evolution, possibly as distantly as molluscs. The discovery, identification, and characterisation of soluble LRP1 introduces this protein in the human circulation, and presents a possible further level of regulation for its associated receptor system.
14

The role of P2Y[subscript]2 nucleotide receptor in lipoprotein receptor-related protein 1 expression and aggregated low density lipoprotein uptake in vascular smooth muscle cells

Dissmore, Tixieanna January 1900 (has links)
Doctor of Philosophy / Department of Human Nutrition / Denis M. Medeiros / Laman Mamedova / The internalization of aggregated low-­density lipoprotein (agLDL) may involve the actin cytoskeleton in ways that differ from the endocytosis of soluble LDL. Based on previous findings the P2Y[subscript]2 receptor (P2Y[subscript]2R) mediates these effects through interaction with filamin‐A (FLN‐A), an actin binding protein. Our findings also showed that uridine 5’‐ triphosphate (UTP), a preferential agonist of the P2Y[subscript]2R, stimulates the uptake of agLDL, and increases expression of low‐density lipoprotein receptor related protein 1 (LRP 1) in cultured mouse vascular smooth muscle cells (SMCs). The strategy of this research was to define novel mechanisms of LDL uptake through the modulation of the actin cytoskeleton in order to identify molecular targets involved in foam cell formation in vascular SMCs. For this project, we isolated aortic SMCs from wild type (WT) and P2Y[subscript]2R‐/‐ mice to investigate whether UTP and the P2Y[subscript]2R modulate expression of LRP 1 and low‐density lipoprotein receptor (LDLR). We also investigated the effects of UTP on uptake of DiI‐labeled agLDL in WT and P2Y[subscript]2R‐/‐ vascular SMCs. For LRP1 expression, cells were stimulated in the presence or absence of 10 [mu]M UTP. To determine LDLR mRNA expression, and for agLDL uptake, cells were transiently transfected for 24 h with cDNA encoding hemagglutinin-­tagged (HA-­tagged) WT P2Y[subscript]2R or a mutant P2Y[subscript]2R that does not bind FLN‐A, and afterwards treated with 10 [mu]M UTP. Total RNA was isolated, reversed transcribed to cDNA, and mRNA relative abundance determined by RT-­PCR using the delta-­delta Ct method with GAPDH as control gene. Results show SMCs expressing the mutant P2Y[subscript]2R that lacks the FLN‐A binding domain exhibit 3‐fold lower LDLR expression than SMCs expressing the WT P2Y[subscript]2R. There was also decrease in LRP1 mRNA expression in response to UTP in P2Y[subscript]2R‐/‐ SMCs compared to WT. Actinomycin‐D (20 [mu]g/ml) significantly reduced UTP-­induced LRP1 mRNA expression in P2Y[subscript]2R‐/‐ SMCs (P < 0.05). Compared to cells transfected with mutant P2Y[subscript]2R, cells transfected with WT P2Y[subscript]2R showed greater agLDL uptake in both WT VSMC and P2Y[subscript]2R-­/-­ cells. Together these results show that both LRP 1 and LDLR expressions are dependent on an intact P2Y[subscript]2R, and P2Y[subscript]2R/ FLN‐ A interaction is necessary for agLDL uptake.

Page generated in 0.0354 seconds