• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 9
  • 2
  • Tagged with
  • 28
  • 28
  • 28
  • 12
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

A Theoretical Perspective on Hydrogenation and Oligomerization of Acetylene over Pd Based Catalysts / Une étude théorique de l’hydrogénation et l’oligomérisation de l’acétylène sur des catalyseurs de palladium

Vignola, Emanuele 29 September 2017 (has links)
L’hydrogénation sélective de l’acétylène est un processus fondamental pour l’industrie pétrochimique qui permet la purification de l’éthylène utilisé dans les réactions de polymérisation. Ce processus est promu par des catalyseurs au palladium, qui présentent une bonne sélectivité en éthylène par rapport au produit d’hydrogénation totale, c’est-à-dire l’éthane. Les catalyseurs de palladium pur sont malheureusement désactivés par des oligomères qui se forment comme sous-produits de la réaction d’hydrogénation. Les catalyseurs d’usage industriel sont, pour cette raison, plutôt des alliages de palladium avec d’autres métaux, comme par exemple, l’argent. Ces alliages réduisent la production des oligomères, sans pour autant les supprimer complètement. Ce travail de thèse a été focalisé sur la compréhension à l’échelle moléculaire de la formation de ce mélange d’oligomères, souvent appelée « huile verte ». Pour commencer, une approche de champ moyen a été développée pour déterminer rapidement l’état de la surface catalytique de l’alliage Pd-Ag en condition de réaction. Ce modèle a montré que l’acétylène est capable de réorganiser la couche de la surface et de générer des îles de palladium. Pour confirmer cette prédiction, nous avons effectué des simulations Monte Carlo en utilisant un Hamiltonien modèle. Ces calculs ont produits des résultats similaires au modèle analytique simple. Ayant attribué la formation des oligomères aux domaines de palladium ainsi obtenus, les étapes de d’oligomérisation ont été étudies et comparés à celles qui décrivent l’hydrogénation de l’acétylène. Les calculs, réalisé avec l’approximation de la théorie de la fonctionnelle de la densité (DFT), ont montré que la formation des oligomères est compétitive avec l’hydrogénation. En plus, les oligomères sont plus faciles à hydrogéner que l’acétylene et pourraient, donc, impacter négativement sur l’hydrogénation sélective de l’acétylène. Le rôle exact des îles de palladium sous conditions réalistes est encore à clarifier, sachant que le palladium est recouvert d’une grande variété d’espèces chimiques. Les techniques d’intelligence artificielle peuvent aider à atteindre ce but : nous avons ainsi démontré qu’il est possible d’interpoler les résultats des calculs DFT d’une façon automatique et de décrire l’énergie du système en série de coefficients « cluster ». Ceci permet de prendre en compte les interactions latérales entre espèces chimiques à la surface du palladium. / Selective hydrogenation of acetylene in ethylene-rich flows is a fundamental process in the petrochemical industry since it allows the purification of ethylene for polymer applications. The reaction is catalyzed by Pd, which features acceptable selectivity towards ethylene compared to the total hydrogenation product, ethane. Pure Pd is, however, deactivated by oligomeric byproducts, known as ”green oil” in the literature. Therefore, most industrial catalysts are Pd-Ag alloys, where Ag helps to suppress the secondary reactions. This work addresses the formation of initial oligomers on Pd and Ag-Pd catalysts. A mean field based theoretical model was built to efficiently screen the topology of the topper most layer of the alloy catalyst under relevant conditions. This model gave evidence for strongly favored Pd island formation. To confirm this result, the system was then re-investigated by means of Monte Carlo simulations including the effect of segregation. Emergence of large domains of Pd were confirmed over large ratios of Ag to Pd. Green oil is expected to form on these catalytically active islands. To obtain a detailed view on the oligomerization process, activation energies were computed both for hydrogenation and oligomerization steps by periodic density functional theory on Pd(111). Oligomerization was found to be competitive with hydrogenation, with the hydrogenation of the oligomers being among the fastest processes. The role of Pd domains to green oil formation is still to be clarified under realistic conditions, where the surface is covered by many different species. A step forward to this goal was taken by developing a machine-learning tool which automatically interpolates model Hamiltonians on graphical lattices based on DFT computations, accounting for lateral interactions and distorted adsorption modes on crowded surfaces.
12

Méthode de simulation appropriée aux systèmes complexes : preuve de concept auto-adaptative et auto-apprenante appliquée aux transferts thermiques / Suitable method for complex systems simulation : self-adaptive and self-learning proof-of-concept applied to coupled heat transfer

Spiesser, Christophe 20 June 2017 (has links)
L’augmentation de la puissance informatique disponible permet aux ingénieurs et designers d’aborder par simulation des problèmes de plus en plus complexes (multi-physiques, multi-échelles, géométries intriquées ...). Dans ce contexte, les quadratures à base de discrétisation (FDM, FEM, FVM) montrent leur limite : le besoin d’un grand nombre de sous-domaines qui implique des coûts RAM et CPU prohibitifs. La méthode de Monte-Carlo apparaît plus appropriée, mais son utilisation est verrouillée par la difficulté de générer des modèles probabilistes de systèmes complexes. Pour surpasser ceci, une approche systémique est proposée et implémentée pour créer une preuve de concept appliquée à la simulation des transferts thermiques couplés. Après une étape de validation vis-à-vis de solutions analytiques, l’outil est employé; sur des cas d’illustration (transferts thermiques au sein de bâtiments et dans une centrale solaire) pour étudier ses capacités. L’approche mise en œuvre présente un comportement particulièrement avantageux pour la simulation de systèmes complexes : son temps de calcul ne dépend que des parties influentes du problème. De plus, elles sont automatiquement identifiées, même en présence de géométries étendues ou intriquées, ce qui rend les simulations auto-adaptatives. Par ailleurs, ses performances de calcul ne sont pas corrélées avec le rapport d’échelle caractérisant le système simulé. Ceci en fait une approche douée d’une remarquable capacité à traiter les problèmes à la fois multi-physiques et multi-échelles. En parallèle de l’estimation d’une observable par des chemins d’exploration, l’outil analyse également ces derniers de manière statistique. Ceci lui permet de générer un modèle prédictif réduit de l’observable, procurant ainsi une capacité d’auto-apprentissage à la simulation. Son utilisation peut améliorer les processus d’optimisation et de contrôle-commande, ou simplifier les mesures par méthodes inverses. De plus, elle a aussi permis de mener une analyse par propagation d’incertitudes, affectant les conditions aux frontières, vers l’observable. Enfin, une démonstration d’optimisation, utilisant des modèles réduits générés, a été réalisée. / As computing power increases, engineers and designers tackle increasingly complex problems using simulation (multiphysics, multiscale, intricated geometries ...). In this context, discretization-based quadratures (FDM, FEM, FVM) show their limit: the need of a great number of sub-domains which induces prohibitive consumption of RAM and CPU power. The Monte Carlo method appears to be more appropriate, but the difficulty to build probabilistic models of complex systems forms a bottleneck. A systemic approach is proposed to alleviate it and is implemented to create a proof-of-concept dedicated to the coupled heat transfer simulation. After a successful validation step against analytical solutions, this tool is applied to illustrative cases (emulating heat transfer in buildings and in solar heating systems) in order to study its simulation capabilities.This approach presents a major beneficial behavior for complex systems simulation: the computation time only depends on the influential parts of the problem. These parts are automatically identified, even in intricate or extensive geometries, which makes the simulation self-adaptive. In addition, the computational performance and the system scale ratio are completely uncorrelated. Consequently, this approach shows an exceptional capacity to tackle multiphysics and multiscale problems. Each temperature is estimated using exploration paths. By statistically analyzing these paths during the process, the tool is able to generate a reduced predictive model of this physical quantity, which is bringing a self-learning capacity to the simulation. Its use can significantly improve optimization and control of processes, or simplify inverse measurements. Furthermore, based on this model, an uncertainty propagation analysis has been performed. It quantifies the effect of uncertainties affecting boundary conditions on the temperature. Finally a Particle Swarm Optimization (PSO) process, based on simulations done by the framework, is successfully carried out.
13

Excitation and fragmentation of CnN⁺ (n=1-3) molecules in collisions with He atoms at intermediate velocity ; fundamental aspects and application to astrochemistry / Excitation et fragmentation des molécules CnN⁺ (n = 1-3) en collision avec des atomes de He à vitesse intermédiaire ; aspects fondamentaux et application à l'astrochimie

Mahajan, Thejus 28 September 2018 (has links)
Dans cette thèse nous avons étudié des collisions entre des projectiles CnN⁺ (n=0,1,2,3) et des atomes d’Hélium à vitesse intermédiaire (2.25 u.a). A cette vitesse, proche de la vitesse des électrons sur les couches de valence externe des atomes et molécules, de nombreux processus électroniques prennent place avec une forte probabilité : ionisation (simple et multiple), excitation électronique, capture d’électron (simple et double). Nous avons mesuré les sections efficaces absolues de tous ces processus. Un autre aspect intéressant de la collision concerne la fragmentation des molécules excitées, que nous avons également mesurée précisément grâce à un dispositif dédié. Les expériences ont été effectuées auprès de l’accélérateur Tandem d’Orsay avec des faisceaux de quelques MeV d’énergie cinétique. Le dispositif AGAT a permis de réaliser les collisions (en condition de collision unique) et de mesurer tout à la fois les sections efficaces des processus et la fragmentation associée. Parallèlement nous avons simulé ces collisions d’un point de vue théorique en utilisant le modèle à Atomes et Electrons Indépendants (IAE) couplé à des calculs CTMC (Classical trajectory Monte Carlo). Sur cette base, nous avons prédit les sections efficaces qui se sont trouvées être en bon accord avec les mesures, à l’exception de la double capture d’électrons. Par ailleurs les rapports de branchement de dissociation des CnN⁺ après excitation électronique sont bien reproduits en utilisant la distribution d’énergie interne des espèces calculées avec le même modèle IAE/CTMC. Ces expériences nous ont permis de construire des « Breakdown Curves » (BDC), véritables cartes d’identité des molécules qui permettent de prévoir, dans le cadre d’une fragmentation statistique comment va fragmenter un système dont on connait l’énergie interne. Avec ces BDC nous avons pu prédire et recommander des rapports de branchement pour des voies de sortie de processus physiques et chimiques d’intérêt astrochimique. Ces données seront insérées dans la base internationale d'astrochimie the Kinetic Data Base for Astrochemistry KIDA. Cette thèse a été réalisée dans le cadre de l’Ecole Doctorale Ondes et Matière (EDOM) à l’Institut des Sciences Moléculaires d’Orsay (ISMO), à l’Université Paris-Sud Paris Saclay. / This thesis studies the aftermath of collision between singly positively charged Nitrogenated carbon species CnN⁺ (n=0,1,2,3) and neutral Helium atom at a velocity of 2.25 au. At this velocity, close to the velocity of outer electrons in atoms and molecules, several electronic processes take place and are near their maximum of probability such as ionisation (single, double, triple …), electronic excitation and electron capture (single and double). We looked at their cross sections and how their evolution with the molecule size. Following the collision the molecule can fragment, which leads to another interesting aspect, the fragmentation branching ratios. Collision experiments were done using a Tandem accelerator at Orsay that produced the CnN⁺ projectiles and a dedicated set-up, AGAT, to capture the flying fragments/intact molecule after collision according to their charge to mass ratio. Knowing the number of particles that are shot and the fact that our set-up allows no loss of fragments/intact molecule, we could get the probabilities of various fragments formed. Using these probabilities and a knowledge of the Helium jet profile used, we could measure their cross sections. The probabilities alone are sufficient to obtain the fragmentation branching ratios.The next step was to use a theoretical model to simulate the collision. We used Independent Atom and Electron (IAE) model coupled with Classical Trajectory Monte Carlo (CTMC) method to calculate the desired cross sections. A general good agreement was obtained, with the exception of double electron capture. The model could also predict, through the calculation of the species internal energy, the fragmentation branching ratios of cations CnN⁺ after electronic excitation. Also, the branching ratios were used to construct semi-empirical Breakdown Curves (BDCs), which are internal energy dependent dissociation branching ratios specific to each molecule, type, size and charge. With those, we could recommend products branching ratios to be used for various processes of astrochemical interest. The products branching ratios will be made available for a wider network of researchers under the international Kinetic Database for Astrochemistry (KIDA).This thesis was realized under the doctoral programme of Ecole Doctorale Ondes et Matiere (EDOM) with Institut des Sciences Moléculaires d’Orsay (ISMO) where the author was given an office and Université Paris-Sud where the author is formally enrolled.
14

Les théorèmes ergodiques en simulation

Ben Alaya, Mohamed 11 December 1992 (has links) (PDF)
Ce travail se compose de deux parties indépendantes. La première est consacrée à l'étude de la méthode du décalage, dite aussi méthode du Shift, pour le calcul d'espérances mathématiques en dimension grande ou infinie. Pour l'essentiel, la méthode du décalage est la mise en oeuvre informatique du théorème ergodique ponctuel de Birkhoff pour l'opérateur de décalage (à gauche ou, à défaut, à droite). La deuxième partie s'attache au problème de l'approximation des mesures invariantes pour les chaînes de Markov.
15

Radiative properties computational modeling of porous cellular materials / Modélisation informatique de matières cellulaires poreuses

Cunsolo, Salvatore 23 January 2018 (has links)
Les transferts thermiques par rayonnement dans des mousses sont modélisés à partir de la morphologie du matériau et des propriétés de sa phase solide. Dans ce travail de thèse, une attention particulière est portée sur les modèles radiatifs de Monte Carlo. Les différentes approches d’homogénéisation telles que « Homogeneous Phase » (HPA) and « Multi Phase » (MPA) sont discutées et comparées. Des développements novateurs sont proposés pour améliorer la précision des résultats. Nos avancées permettent de générer numériquement trois types de mousses périodiques couvrant un large domaine de matériaux cellulaires: mousse à pores fermés à haute porosité, mousse à cellules ouvertes à basse et haute porosité. Pour ces dernières, des comparaisons morphologiques avec des données expérimentales tomographiques, montrent des résultats satisfaisants et tendent à valider nos modèles de génération. Des mousses dont la phase solide est opaque ont tout d’abord été étudiées. Nos simulations ont permis de trouver de nouvelles lois analytiques précises permettant d’estimer les propriétés radiatives de ces matériaux à partir de données morphologiques. Ensuite, nous avons considéré des mousses, dont la phase solide est semi transparente. La modélisation du transfert radiatif au sein de ces milieux cellulaires est plus complexe. Les méthodes de modélisation des propriétés radiatives de la littérature, HPA et MPA, sont testées. Des simulations de Monte carlo directes dans les matériaux ont permis de mettre en exergue les limites de ces modèles. Des modèles novateurs ont été proposés afin d’ améliorer la précision des simulations. Ils sont basés sur une méthode hybride directe-inverse et une modification de l’équation de transfert radiatif classique. Ces nouveaux modèles (HPA+ et MPA+) ont été testés sur un ensemble varié de morphologies générées numériquement. Les modèles améliorés sont systématiquement plus précis que les modèles existants / Cellular media such as plastic, ceramic and metal foams present specific characteristics that make them interesting for a number of applications related to thermal engineering. Their ability to minimize natural convection makes them ideal candidates for insulation applications, while the high specific surface and permeability to fluid of open cell foams makes them interesting heat transfer enhancers. In addition, their permeability to light makes them an ideal candidate for thermal radiation based applications, such as porous burners or solar energy collectors. In many of these application, thermal radiation heat transfer can have a significant influence on the heat transfer process. Both accurate radiation models and accurate morphological models of the structure of the foam are required. This work provides an original contribution on both these accounts. A discussion of the literature on numerical methods for radiation heat transfer in cellular media is presented, with focus on Monte Carlo methods. Homogeneous Phase (HPA) and Multi Phase (MPA) methods are discussed. Further efforts are required to accurately model and digitally replicate of foam morphologies. Our goal is to digitally generate three commonly occurring types of foam structures, covering a large range of real materials: high-porosity open cell foams, high-porosity closed cell foams, low-porosity open-cell structures. For high-porosity open cell foams, the automated parametric digital generation technique was validated against a dataset consisting of raw morphological data obtained by tomographic analysis. The generation capabilities were then applied to parametrically investigate the influence of morphological parameters on the radiative properties (namely, the extinction coefficient) of an opaque open-cell foam. Highly accurate analytical relationships were subsequently deduced and validated by comparison with results obtained from tomography samples. Modeling radiation in foams with a semi-transparent solid phase is substantially more complex. A Direct Monte-Carlo Homogenization reference technique is proposed, that allows to simulate radiation within arbitrary cavities and calculate macroscopic radiative quantities based on a Representative Elementary Volume (REV) of cellular material. The technique is validated against full scale Monte Carlo simulations. Improvements of the existing Homogeneous Phase and Multi Phase approach are proposed, through extensive use of inverse methods and the addition of one equation to take into account specific phenomena taking place in the semi-transparent solid phase. The resulting Improved Homogenized Approaches are extensively tested by comparing them with Direct Monte Carlo Homogenization simulations and existing homogenized models, on a varied set of morphologies making full use of the previously developed digital generation techniques. The improved models consistently outperform existing homogenized models.
16

Condensation et homogénéisation des sections efficaces pour les codes de transport déterministes par la méthode de Monte Carlo : Application aux réacteurs à neutrons rapides de GEN IV / Condensation and homogenization of cross sections for the deterministic transport codes with Monte Carlo method : Application to the GEN IV fast neutron reactors

Cai, Li 30 October 2014 (has links)
Dans le cadre des études de neutronique menées pour réacteurs de GEN-IV, les nouveaux outils de calcul des cœurs de réacteur sont implémentés dans l’ensemble du code APOLLO3® pour la partie déterministe. Ces méthodes de calculs s’appuient sur des données nucléaires discrétisée en énergie (appelées multi-groupes et généralement produites par des codes déterministes eux aussi) et doivent être validées et qualifiées par rapport à des calculs basés sur la méthode de référence Monte-Carlo. L’objectif de cette thèse est de mettre au point une technique alternative de production des propriétés nucléaires multi-groupes par un code de Monte-Carlo (TRIPOLI-4®). Dans un premier temps, après avoir réalisé des tests sur les fonctionnalités existantes de l’homogénéisation et de la condensation avec des précisions meilleures accessibles aujourd’hui, des incohérences sont mises en évidence. De nouveaux estimateurs de paramètres multi-groupes ont été développés et validés pour le code TRIPOLI-4®à l’aide de ce code lui-même, puisqu’il dispose de la possibilité d’utiliser ses propres productions de données multi-groupes dans un calcul de cœur. Ensuite, la prise en compte de l’anisotropie de la diffusion nécessaire pour un bon traitement de l’anisotropie introduite par des fuites des neutrons a été étudiée. Une technique de correction de la diagonale de la matrice de la section efficace de transfert par diffusion à l’ordre P1 (nommée technique IGSC et basée sur une évaluation du courant des neutrons par une technique introduite par Todorova) est développée. Une amélioration de la technique IGSC dans la situation où les propriétés matérielles du réacteur changent drastiquement en espace est apportée. La solution est basée sur l’utilisation d’un nouveau courant qui est projeté sur l’axe X et plus représentatif dans la nouvelle situation que celui utilisant les approximations de Todorova, mais valable seulement en géométrie 1D. A la fin, un modèle de fuite B1 homogène est implémenté dans le code TRIPOLI-4® afin de produire des sections efficaces multi-groupes avec un spectre critique calculé avec l’approximation du mode fondamental. Ce modèle de fuite est analysé et validé rigoureusement en comparant avec les autres codes : Serpent et ECCO ; ainsi qu’avec un cas analytique.L’ensemble de ces développements dans TRIPOLI-4® permet de produire des sections efficaces multi-groupes qui peuvent être utilisées dans le code de calcul de cœur SNATCH de la plateforme PARIS. Ce dernier utilise la théorie du transport qui est indispensable pour la nouvelle filière à neutrons rapides. Les principales conclusions sont : -Le code de réseau en Monte-Carlo est une voie intéressante (surtout pour éviter les difficultés de l’autoprotection, de l’anisotropie limitée à un certain ordre du développement en polynômes de Legendre, du traitement des géométries exactes 3D), pour valider les codes déterministes comme ECCO ou APOLLO3® ou pour produire des données pour les codes déterministes ou Monte-Carlo multi-groupes.-Les résultats obtenus pour le moment avec les données produites par TRIPOLI-4® sont comparables mais n’ont pas encore vraiment montré d’avantage par rapport à ceux obtenus avec des données issues de codes déterministes tel qu’ECCO. / In the framework of the Generation IV reactors neutronic research, new core calculation tools are implemented in the code system APOLLO3® for the deterministic part. These calculation methods are based on the discretization concept of nuclear energy data (named multi-group and are generally produced by deterministic codes) and should be validated and qualified with respect to some Monte-Carlo reference calculations. This thesis aims to develop an alternative technique of producing multi-group nuclear properties by a Monte-Carlo code (TRIPOLI-4®).At first, after having tested the existing homogenization and condensation functionalities with better precision obtained nowadays, some inconsistencies are revealed. Several new multi-group parameters estimators are developed and validated for TRIPOLI-4® code with the aid of itself, since it has the possibility to use the multi-group constants in a core calculation.Secondly, the scattering anisotropy effect which is necessary for handling neutron leakage case is studied. A correction technique concerning the diagonal line of the first order moment of the scattering matrix is proposed. This is named the IGSC technique and is based on the usage of an approximate current which is introduced by Todorova. An improvement of this IGSC technique is then presented for the geometries which hold an important heterogeneity property. This improvement uses a more accurate current quantity which is the projection on the abscissa X. The later current can represent the real situation better but is limited to 1D geometries.Finally, a B1 leakage model is implemented in the TRIPOLI-4® code for generating multi-group cross sections with a fundamental mode based critical spectrum. This leakage model is analyzed and validated rigorously by the comparison with other codes: Serpent and ECCO, as well as an analytical case.The whole development work introduced in TRIPLI-4® code allows producing multi-group constants which can then be used in the core calculation solver SNATCH in the PARIS code platform. The latter uses the transport theory which is indispensable for the new generation fast reactors analysis. The principal conclusions are as follows:-The Monte-Carlo assembly calculation code is an interesting way (in the sense of avoiding the difficulties in the self-shielding calculation, the limited order development of anisotropy parameters, the exact 3D geometries) to validate the deterministic codes like ECCO or APOLLO3® and to produce the multi-group constants for deterministic or Monte-Carlo multi-group calculation codes. -The results obtained for the moment with the multi-group constants calculated by TRIPOLI-4 code are comparable with those produced from ECCO, but did not show remarkable advantages.
17

Transport d'ions hydrogénoïdes rapides dans les solides : mise en évidence de l'écrantage dynamique

Fourment, Claude 12 October 2000 (has links) (PDF)
L'étude du transport des états excités permet de tester l'interaction ion-solide et en particulier de sonder la réponse du milieu. Deux sortes de processus interviennent lors de collision ion-solide : la succession de collisions binaires entre les atomes du solide et l'ion projectile, et son interaction avec le champ de polarisation (« champ de sillage ») qu'il induit dans le gaz d'électrons du milieu. Nous avons établi l'équation pilote qui régit l'évolution de la matrice densité des états électroniques internes d'un ion hydrogénoïde lourd et rapide dans un solide en tenant compte de ces deux processus physiques. Nous présentons une analyse quantitative de l'influence des paramètres intervenant dans la description du transport. En particulier le champ de sillage est responsable d'un mélange cohérent entre niveaux quasi dégénérés dont les manifestations expérimentales sont riches d'informations tant du point de vue du peuplement des états excités que de la réponse du milieu. Expérimentalement, des techniques de spectroscopie X à haute résolution sont utilisées pour observer l'évolution des populations des niveaux np (2 £ n £ 5) ainsi que de certains niveaux de structure fine du projectile en fonction de l'épaisseur de cible traversée. L'étude expérimentale complète des systèmes collisionnels Kr35+ sur C et Al (E = 60 MeV/A) où les états excités sont initialement peuplés par simple excitation est présentée. Le modèle théorique d'équation pilote reproduit très bien ces résultats expérimentaux, ainsi que ceux provenant d'études précédentes où les états excités étaient initialement peuplés par capture électronique mécanique (MEC). La comparaison expérience-théorie nous permet d'une part d'avoir accès à des paramètres clefs de l'évolution des états excités du projectile comme la valeur du champ de sillage induit (= 1e9 V.cm-1) et sa variation spatiale à l'échelle des orbites atomiques, et d'autre part de tester les conditions initiales avant transport en termes de sections efficaces et de cohérences collisionnelles (excitation et MEC).
18

Modèle particulaire 2D et 3D sur GPU pour plasma froid magnétisé : Application à un filtre magnétique

Claustre, Jonathan 17 December 2012 (has links) (PDF)
La méthode PIC MCC (Particle-In-Cell Monte-Carlo Collision) est un outils très performant et efficace en ce qui concerne l'étude des plasmas (dans notre cas, pour des plasmas froids) car il permet de décrire l'évolution dans le temps et dans l'espace, des particules chargées sous l'effet des champs auto-consistants et des collisions. Dans un cas purement électrostatique, la méthode consiste à suivre les trajectoires d'un nombre représentatif de particules chargées, des électrons et des ions, dans l'espace des phases, et de décrire l'interaction collective de ces particules par la résolution de l'équation de Poisson. Dans le cas de plasmas froid, les trajectoires dans l'espace des phase sont déterminées par le champ électrique auto-consistant et par les collisions avec les atomes neutres ou les molécules et, pour des densités relativement importantes, par les collisions entre les particules chargées. Le coût des simulations pour ce type de méthode est très élevé en termes de ressources (CPU et mémoire). Ceci est dû aux fortes contraintes (dans les simulations PIC explicites) sur le pas de temps (plus petit qu'une fraction de la période plasma et inverse à la fréquence de giration électronique), sur le pas d'espace (de l'ordre de la longueur de Debye), et sur le nombre de particules par longueur de Debye dans la simulation (généralement de l'ordre de plusieurs dizaines). L'algorithme PIC MCC peut être parallélisé sur des fermes de calculs de CPU (le traitement de la trajectoires des particules est facilement parallélisable, mais la parallélisation de Poisson l'est beaucoup moins). L'émergence du GPGPU (General Purpose on Graphics Processing Unit) dans la recherche en informatique a ouvert la voie aux simulations massivement parallèle à faible coût et ceci par l'utilisation d'un très grand nombre de processeurs disponible sur les cartes graphiques permettant d'effectuer des opérations élémentaires (e.g. calcul de la trajectoires des particules) en parallèle. Un certain nombre d'outils numérique pour le calcul sur GPU ont été développés lors de ces 10 dernières années. De plus, le constructeur de cartes graphiques NVIDIA a développé un environnement de programmation appelé CUDA (Compute Unified Device Architecture) qui permet une parallélisation efficace des codes sur GPU. La simulation PIC avec l'utilisation des cartes graphiques ou de la combinaison des GPU et des CPU a été reporté par plusieurs auteurs, cependant les modèles PIC avec les collisions Monte-Carlo sur GPU sont encore en pleine étude. A l'heure actuelle, de ce que nous pouvons savoir, ce travail est le premier a montrer des résultats d'un code PIC MCC 2D et 3D entièrement parallélisé sur GPU et dans le cas de l'étude de plasma froid magnétisé. Dans les simulation PIC, il est relativement facile de suivre les particules lorsqu'il n'y a ni pertes ni création (e.g. limites périodiques ou pas d'ionisation) de particules au cours du temps. Cependant il devient nécessaire de réordonner les particules à chaque pas en temps dans le cas contraire (ionisation, recombinaison, absorption, etc). Cette Thèse met en lumière les stratégies qui peuvent être utilisées dans les modèles PIC MCC sur GPU permettant d'outre passer les difficultés rencontrées lors du réarrangement des particules après chaque pas de temps lors de la création et/ou des pertes. L'intérêt principal de ce travail est de proposer un algorithme implémenté sur GPU du modèle PIC MCC, de mesurer l'efficacité de celui-ci (parallélisation) et de le comparer avec les calculs effectués sur GPU et enfin d'illustrer les résultats de ce modèle par la simulation de plasma froid magnétisé. L'objectif est de présenter en détail le code utilisé en de montrer les contraintes et les avantages liées à la programmation de code PIC MCC sur GPU. La discussion est largement ciblé sur le cas en 2D, cependant un algorithme 3D a également été développé et testé comme il est montré à la fin de cette thèse.
19

CARACTÉRISATION ET MODÉLISATION DES PLASMAS MICRO-ONDE MULTI-DIPOLAIRES<br />APPLICATION À LA PULVÉRISATION ASSISTÉE <br />PAR PLASMA MULTI-DIPOLAIRE

Tran, Tan Vinh 20 December 2006 (has links) (PDF)
L'extension d'échelle des procédés plasma fonctionnant à très faibles pressions est l'une des problématiques à résoudre pour leur essor au niveau industriel. Une solution consiste à distribuer uniformément des sources de plasma élémentaires dans lesquelles le plasma est produit par couplage à la résonance cyclotronique électronique (RCE). Ces sources élémentaires sont constituées d'un aimant permanent cylindrique (dipôle magnétique) disposé à l'extrémité d'une structure coaxiale d'amenée des micro-ondes. Bien que conceptuellement simple, l'optimisation de ces sources de plasma dipolaires est complexe. Elle requiert la connaissance, d'une part, des configurations de champ magnétique statique et électrique micro-onde, et, d'autre part, des mécanismes de production du plasma, dans les zones de champ magnétique fort (condition RCE), et des mécanismes de diffusion. Ainsi, une caractérisation expérimentale des domaines de fonctionnement et des paramètres plasma par sonde de Langmuir et par spectroscopie d'émission optique a été menée sur différentes configurations de sources dipolaires. Parallèlement, une première modélisation analytique a permis de calculer des champs magnétiques de configurations simples, le mouvement et la trajectoire des électrons dans ces champs magnétiques, l'accélération des électrons par couplage RCE. Ces résultats ont permis ensuite de valider la modélisation numérique des trajectoires électroniques par une méthode hybride Particle In Cell / Monte-Carlo. L'étude expérimentale a mis en évidence des domaines de fonctionnement pression/puissance très larges, entre 15 et 200 W de puissance micro-onde et depuis 0,5 jusqu'à 15 mTorr dans l'argon. L'étude des paramètres plasma a permis de localiser la zone de couplage RCE près du plan équatorial de l'aimant et de confirmer l'influence de la géométrie de l'aimant sur cette dernière. Ces caractérisations appliquées à un réacteur cylindrique utilisant 48 sources ont montré la possibilité d'atteindre au centre de l'enceinte des densités entre 1011 et 1012 cm-3 pour des pressions d'argon de quelques mTorr. La modélisation des trajectoires électroniques au voisinage des aimants indique un meilleur confinement radial pour des aimants présentant un rapport longueur/diamètre élevé. De plus, cette étude numérique confirme les résultats de l'étude expérimentale, à savoir une zone de couplage RCE près du plan équatorial et non au voisinage de l'extrémité du guide coaxial micro-onde. Enfin, ces résultats ont été appliqués avec succés à la pulvérisation assistée par plasma multi-dipolaire de cibles, permettant en particulier une usure uniforme de ces dernières.
20

Simulation du parcours des électrons élastiques dans les matériaux et structures. Application à la spectroscopie du pic élastique multi-modes MM-EPES

Chelda, Samir 25 November 2010 (has links) (PDF)
La spectroscopie EPES (Elastic Peak Electron Spectroscopy) permet de mesurer le pourcentage he d'électrons rétrodiffusés élastiquement par la surface d'un échantillon soumis à un bombardement électronique. C'est une méthode non destructive et extrêmement sensible à la surface. L'objectif de ce travail est de modéliser le cheminement des électrons élastiques dans la matière grâce à une simulation informatique basée sur la méthode Monte Carlo. Cette simulation contribue de manière essentielle à la connaissance et à l'interprétation des résultats expérimentaux obtenus par spectroscopie EPES. Nous avons, de plus, adapté cette simulation à différentes surfaces transformées à l'échelle micrométrique et nanométrique. A l'aide d'une méthode originale, basée sur une description couche par couche du matériau, j'ai réalisé un programme informatique (MC1) rendant compte du cheminement des électrons élastiques dans les différentes couches du matériau. Le nombre d'électrons ressortant de la surface dépend de nombreux paramètres comme : la nature du matériau à étudier, l'énergie des électrons incidents, l'angle d'incidence, les angles de collection des analyseurs. De plus, je me suis intéressé à l'effet de la rugosité de la surface et j'ai démontré qu'elle joue un rôle déterminant sur l'intensité du pic élastique. Ensuite, grâce à l'association de la spectroscopie EPES et de la simulation Monte Carlo, j'ai déduit les modes de croissance de l'or sur substrat d'argent et de cuivre. Les effets de l'arrangement atomique et des pertes énergétiques de surfaces ont ensuite été étudiés. Pour cela, une deuxième simulation MC2 tenant compte de ces deux paramètres a été réalisée permettant d'étudier les surfaces à l'échelle nanométriques. Ces paramètres jusqu'alors non pris en compte dans notre simulation MC1, joue un rôle essentiel sur l'intensité élastique. Ensuite, j'ai obtenu une formulation simple et exploitable pour l'interprétation des résultats obtenus par la simulation MC2 pour un analyseur RFA. Afin de valider, les différents résultats de la simulationMC2, j'ai réalisé des surfaces de silicium nanostructurées, à l'aide de masques d'oxyde d'alumine réalisés par voie électrochimique. J'ai pu créer des nano-pores par bombardement ionique sous ultravide sur des surfaces de silicium. Afin de contrôler la morphologie de la surface, j'ai effectué de l'imagerie MEB ex-situ. La simulation Monte Carlo développée associée aux résultats EPES expérimentaux permet d'estimer la profondeur, le diamètre et la morphologie des pores sans avoir recours à d'autres techniques ex-situ.Cette simulation MC2 permet de connaître la surface étudiée à l'échelle nanométrique.

Page generated in 0.0427 seconds