Spelling suggestions: "subject:"laméthode dde galerkin discontinued"" "subject:"laméthode dde galerkin discontinuation""
1 |
Modélisation et simulation numérique pour la migration terrestre par équation d'ondes.Baldassari, Caroline 17 December 2009 (has links) (PDF)
Nous nous intéressons à l'application de la méthode de Galerkine discontinue avec pénalité intérieure (IPDGM) pour la migration terrestre par équations d'ondes. Il s'agit d'utiliser la propagation d'ondes sismiques pour produire des images du sous-sol et notre contribution se situe au niveau de la résolution du problème direct que nous proposons de faire par une méthode d'éléments finis s'appuyant sur des tétraèdres. Cette méthode est particulièrement bien adaptée pour la migration terrestre où il est nécessaire de prendre en compte la topographie du site qui est de plus en plus souvent accidentée. Tout d'abord, nous analysons les performances de la méthode d'éléments finis que nous avons choisie et concluons qu'elle surpasse les méthodes de différences finies classiquement utilisées pour la Reverse Time Migration (RTM) et qu'elle est aussi performante en terme de précision que la méthode d'élément spectraux qui est la méthode d'éléments finis la plus populaire en géophysique. Nous justifions ensuite notre choix en montrant qu'on peut imager des régions complexes en utilisant notamment des données synthétiques générées avec un autre code que le code IPDGFem développé durant la thèse. Pour finir, nous nous intéressons à la technique de pas de temps locaux qui permet d'adapter le pas de temps de la méthode à la taille des mailles utilisées et proposons une nouvelle discrétisation temporelle qui permet de combiner des ordres différents en temps et en espace. Les premiers résultats obtenus en 1D sont très intéressants et encourageants et le 2D est en cours de développement.
|
2 |
Méthodes Galerkin discontinues pour la simulation et la calibration de modèles de dispersion non-locaux en nanophotonique / High-order simulations and calibration strategies for spatial dispersion models in nanophotonicsSchmitt, Nikolai 27 September 2018 (has links)
L'objectif principal de cette thèse est l'étude des problèmes et des applications qu'ils se développent dans le domaine de la nanophotonique. Plus précisément, nous considérons les structures de métaux nobles où les modèles de dispersion locaux sont insuffisants et la non-localité doit être incluse dans le modèle. Ici, le système physique sous-jacent est typiquement modélisé comme des équations de Maxwell couplées à des lois de dispersion spatio-temporelles dans le régime des longueurs d'onde optiques. Bien que les solutions analytiques puissent être dérivées pour un petit nombre de problèmes, cela n'est généralement pas possible pour les dispositifs du monde réel, qui présentent souvent des géométries complexes et des compositions de matériaux. Suite à une analyse rigoureuse des propriétés physiques et mathématiques du modèle continu original, nous proposons une méthode de type à éléments finis d'ordre élevé pour discrétiser le modèle continu dans l'espace et le temps. Les méthodes discontinues Galerkin (DG) sont bien établies pour la discrétisation spatiale des équations de Maxwell. Cette thèse prolonge les travaux antérieurs sur les systèmes couplés des équations de Maxwell et les lois de dispersion spatiale. Nous utilisons des méthodes explicites de Runge-Kutta (RK) d'ordre élevé pour la discrétisation temporelle. L'intégration temporelle RK garantit un ordre de convergence espace-temps élevé du schéma entièrement discret, qui repose sur un schéma de preuve de convergence. Parallélisme MPI (Message Passing Interface), éléments curvilignes et PML (Perfectly Matched Layers) autour des aspects d'implémentation et d'évaluation des performances dans le cadre du logiciel développé à Inria Sophia Antipolis-Méditerannée (DIOGENES). La méthode développée est appliquée à de nombreuses simulations nanophotoniques réelles de dispositifs où des observables tels que la réflexion, la section transversale (CS) et la spectroscopie de perte d'énergie électronique (EELS) sont étudiés. Entre autres, nous élaborons une feuille de route pour un étalonnage expérimental robuste du modèle de dispersion non local linéarisé basé sur la solution de problèmes inverses et la quantification d'incertitude (UQ) des paramètres géométriques stochastiques. Nous avons également amélioré les accords de simulations numériques non locales et les résultats expérimentaux pour la résonance des plasmons d'espacement des nano-cubes d'argent. Cela démontre la pertinence de simulations non locales précises. / The main objective of this thesis is the study of problems and applications as they arise in the field of nanophotonics. More speci cally, we consider noble metal structures where local dispersion models are insu cient and nonlocality has to be included in the model. Here, the underlying physical system is typically modeled as Maxwell’s equations coupled to spatio- temporal dispersion laws in the regime of optical wavelengths. While analytical solutions can be derived for a small number of problems, this is typically not possible for real-world devices, which often feature complicated geometries and material compositions. Following a rigorous analysis of the physical and mathematical properties of the original continuous model, we propose a high order finite element type method for discretizing the continuous model in space and time. Discontinuous Galerkin (DG) methods are well established for the spatial discretization of Maxwell’s equations. This thesis extends previous work on the coupled systems of Maxwell’s equations and spatial dispersion laws. We use explicit high-order Runge-Kutta (RK) methods for the subsequent time discretiz- ation. RK time integration guarantees a high space-time convergence order of the fully-discrete scheme, which is underpinned by a sketch of a convergence proof. Message Passing Interface (MPI) parallelization, curvilinear elements and Perfectly Matched Layers (PMLs) round of implementation aspects and performance assessments in the scope of the Software developed at Inria Sophia Antipolis-Méditerannée (DIOGENeS). The developed method is applied to numerous real-world nanophotonics simulations of devices where observables like re ectance, Cross Section (CS) and Electron Energy Loss Spectroscopy (EELS) are studied. Inter alia, we elaborate a roadmap for a robust experimental calibration of the linearized nonlocal disper- sion model based on the solution of inverse problems and Uncertainty Quanti cation (UQ) of stochastic geometric parameters. We also find improved agreements of nonlocal numerical simulations and exper- imental results for the gap-plasmon resonance of silver nano-cubes. This demonstrates the relevance of accurate nonlocal simulations.
|
3 |
Couplage pour l'aéroacoustique de schémas aux différences finies en maillage structuré avec des schémas de type éléments finis discontinus en maillage non structuréLeger, Raphaël, Leger, Raphaël 05 December 2011 (has links) (PDF)
Cette thèse vise à étudier le couplage entre méthodes de Galerkine discontinue (DG) et méthodes de différences finies (DF) en maillages hybrides non structuré / cartésien, en vue d'applications en aéroacoustique numérique. L'idée d'une telle approche consiste à pouvoir tirer profit localement des avantages respectifs de ces méthodes, soit, en d'autres termes, à pouvoir prendre en compte la présence de géométries complexes par une méthode DG en maillage non structuré, et les zones qui en sont suffisamment éloignées par une méthode DF en maillage cartésien, moins coûteuse. Plus précisément, il s'agit de concevoir un algorithme d'hybridation de ces deux types de schémas pour l'approximation des équations d'Euler linéarisées, puis d'évaluer avec attention le comportement numérique des solutions qui en sont issues. De par le fait qu'aucun résultat théorique ne semble actuellement atteignable dans un cas général, cette étude est principalement fondée sur une démarche d'expérimentation numérique. Par ailleurs, l'intérêt d'une telle hybridation est illustré par son application à un calcul de propagation acoustique dans un cas réaliste
|
4 |
Méthodes de Galerkine discontinues et analyse d'erreur a posteriori pour les problèmes de diffusion hétérogèneStephansen, Annette Fagerhaug 17 December 2007 (has links) (PDF)
Dans cette thèse, nous analysons une méthode de Galerkine discontinue (GD) et deux estimateurs d'erreur a posteriori pour l'équation d'advection-diffusion-réaction linéaire et stationnaire avec diffusion hétérogène. La méthode GD considérée, la méthode SWIP, utilise des moyennes pondérées dont les poids dépendent de la diffusion. L'analyse a priori montre que la convergence est optimale en le pas du maillage et robuste par rapport aux hétérogénéités de la diffusion, ce qui est confirmé par les tests numériques. Les deux estimateurs d'erreur a posteriori sont obtenus par une analyse par résidus et contrôlent la (semi-)norme d'énergie de l'erreur. L'analyse d'efficacité locale montre que presque tous les estimateurs sont indépendants des hétérogénéités. Le deuxième estimateur d'erreur est plus précis que le premier, mais son coût de calcul est légèrement plus élevé. Cet estimateur est basé sur la construction d'un flux H(div)-conforme dans l'espace de Raviart-Thomas-Nédéléc.
|
5 |
Couplage pour l'aéroacoustique de schémas aux différences finies en maillage structuré avec des schémas de type éléments finis discontinus en maillage non structuré / Coupling between finite differences schemes on structured meshes with discontinuous Galerkin schemes on unstructured meshed for computational aeroacousticsLéger, Raphaël 05 December 2011 (has links)
Cette thèse vise à étudier le couplage entre méthodes de Galerkine discontinue (DG) et méthodes de différences finies (DF) en maillages hybrides non structuré / cartésien, en vue d'applications en aéroacoustique numérique. L'idée d'une telle approche consiste à pouvoir tirer profit localement des avantages respectifs de ces méthodes, soit, en d'autres termes, à pouvoir prendre en compte la présence de géométries complexes par une méthode DG en maillage non structuré, et les zones qui en sont suffisamment éloignées par une méthode DF en maillage cartésien, moins coûteuse. Plus précisément, il s'agit de concevoir un algorithme d'hybridation de ces deux types de schémas pour l'approximation des équations d'Euler linéarisées, puis d'évaluer avec attention le comportement numérique des solutions qui en sont issues. De par le fait qu'aucun résultat théorique ne semble actuellement atteignable dans un cas général, cette étude est principalement fondée sur une démarche d'expérimentation numérique. Par ailleurs, l'intérêt d'une telle hybridation est illustré par son application à un calcul de propagation acoustique dans un cas réaliste / This thesis aims at studying coupling techniques between Discontinuous Galerkin (DG) and finite difference (FD) schemes in a non-structured / Cartesian hybrid-mesh context,in the framework of Aeroacoustics computations. The idea behind such an approach is the possibility to locally take advantage of the qualities of each method. In other words, the goal is to be able to deal with complex geometries using a DG scheme on a non-structured mesh in their neighborhood, while solving the rest of the domain using a FD scheme on a cartesian grid, in order to alleviate the needs in computational resources. More precisely, this work aims at designing an hybridization algorithm between these two types of numerical schemes, in the framework of the approximation of the solutions of the Linearized Euler Equations. Then, the numerical behaviour of hybrid solutions is cautiously evaluated. Due to the fact that no theoretical result seems achievable at the present time, this study is mainly based on numerical experiments. What's more, the interest of such an hybridization is illustrated by its application to an acoustic propagation computation in a realistic case
|
6 |
Simulation de la propagation d'ondes électromagnétiques en nano-optique par une méthode Galerkine discontinue d'ordre élevé / Simulation of electromagnetic waves propagation in nano-optics with a high-order discontinuous Galerkin time-domain methodViquerat, Jonathan 10 December 2015 (has links)
L’objectif de cette thèse est de développer une méthode Galerkine discontinue d’ordre élevé capable de prendre en considération des simulations réalistes liées à la nanophotonique. Au cours des dernières décennies, l’évolution des techniques de lithographie a permis la création de structure géométriques de tailles nanométriques, révélant ainsi une large gamme de phénomènes nouveaux nés de l’interaction lumière-matière à ces échelles. Ces effets apparaissent généralement pour des objets de taille égale ou (très) inférieure à la longueur d’onde du champ incident. Ce travail repose sur le développement et l’implémentation de modèles de dispersion appropriés (principalement pour les métaux), ainsi que sur un large éventail de méthodes computationnelles classiques. Deux développements méthodologiques majeurs sont présentés et étudiés en détails: (i) les éléments courbes, et (ii) l’ordre d’approximation local. Ces études sont accompagnées de plusieurs cas-tests réalistes tirés de la nanophotonique. / The goal of this thesis is to develop a discontinuous Galerkin time-domain method to be able to handle realistic nanophotonics computations. During the last decades, the evolution of lithography techniques allowed the creation of geometrical structures at the nanometer scale, thus unveiling a variety of new phenomena arising from light-matter interactions at such levels. These effects usually occur when the device is of comparable size or (much) smaller than the wavelength of the incident field. This work relies on the development and implementation of appropriate models for dispersive materials (mostly metals), as well as on a large panel of classical computational techniques. Two major methodological developments are presented and studied in details: (i) curvilinear elements, and (ii) local order of approximation. This work is complemented with several physical studies of real-life nanophotonics applications.
|
7 |
Propagation des ondes dans un domaine comportant des petites hétérogénéités : modélisation asymptotique et calcul numérique / Small heterogeneities in the context of time-domain wave propagation equation : asymptotic analysis and numerical calculationMattesi, Vanessa 11 December 2014 (has links)
Dans cette thèse, nous nous intéressons à la modélisation mathématique des hétérogénéités de longueurs caractéristiques beaucoup plus petites que la longueur d'ondes. La thèse consiste en deux parties. La partie théorique est dédiée à l'obtention d'un développement asymptotique raccordé: la solution est décrite à l'aide d'un développement de champ proche au voisinage de l'obstacle et par un développement de champ lointain hors de ce voisinage. Le développement de champ lointain met en jeu des solutions singulières de l'équation des ondes tandis que le champ proche lui est régi par un modèle quasi-statique. Ces deux développements sont alors raccordés dans une zone intermédiaire dite de raccord. Nous obtenons alors des estimations d'erreurs permettant de rendre rigoureux ce développement asymptotique formel. La deuxième partie est numérique. Elle décrit à la fois la méthode de Galerkine discontinue, une méthode de raffinement de maillage espace-temps et propose une discrétisation des modèles asymptotiques obtenues précédemment. Elle est illustrée par un certain nombre de tests numériques. / In this thesis, we focus our attention on the modeling of heterogeneities which are smaller than the wavelength. The document is decomposed into two parts : a theoretical one and a numerical one. In the first part, we derive a matched asymptotic expansion composed of a far-field expansion and a near-field expansion. The terms of the far-field expansion are singular solutions of the wave equation whereas the terms of the near-field expansion satisfy quasistatic problems. These expansions are matched in an intermediate region. We justify mathematically this theory by proving error estimates. In the second part, we describe the Discontinuous Galerkin method, a local time stepping method and the implementation of the matched asymptotic method. Numerical simulations illustrate these results.
|
Page generated in 0.0891 seconds