• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 70
  • 60
  • 3
  • Tagged with
  • 131
  • 131
  • 75
  • 69
  • 44
  • 43
  • 42
  • 41
  • 31
  • 27
  • 24
  • 23
  • 21
  • 21
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Vérification Formelle dans le Modèle Polyédrique

Morin-Allory, Katell 27 October 2004 (has links) (PDF)
Les travaux présentés dans ce document sont orientés vers la vérification formelle de propriétés de sûreté dans le cadre de la conception des systèmes enfouis. Nous nous plaçons dans le formalisme du modèle polyédrique, combinaison des systèmes d'équations récurrentes affines avec les polyèdes entiers. Ce modèle permet de faire de la synthèse de haut niveau pour générer des architectures parallèles à partir de la description d'un système régulier dont les dimensions sont définies par des paramètres symboliques. Nous nous intéressons à la vérification de propriétés de sûreté portant sur des signaux booléens de contrôle, générés ou introduits manuellement lors de la synthèse. Les propriétés sur de tels signaux seront appelées propriétés de contrôle. Nous montrons dans ce document que le modèle polyédrique est adapté pour la vérification formelle de propriétés de contrôle.<br /> Dans ce travail, nous développons une "logique polyédrique" qui nous permet de spécifier et prouver des propriétés dans le modèle polyédrique. La syntaxe et la sémantique des formules logiques s'appuient sur celles d'un langage de description de systèmes d'équations récurrentes affines sur des domaines polyédriques. Les règles de déduction sont de différents types : des règles "classiques" sur les connecteurs logiques, des règles de réécriture et des règles induites par des calculs dans le modèle. Nous développons des algorithmes pour automatiser la construction des preuves, ainsi que des techniques heuristiques permettant d'accélérer cette construction. Ces algorithmes nous permettent de prouver des propriétés simples, comme par exemple la propriété qu'un signal vaut toujours vrai pour un ensemble de processeurs et une durée déterminés. Nous présentons ensuite et commençons à développer des pistes afin d'enrichir notre logique pour exprimer des propriétés plus complexes, comme par exemple des propriétés d'exclusion mutuelle. Nous présentons quelques tactiques de preuve pour ces propriétés plus riches.
122

Contributions à la conception sûre des systèmes embarqués sûrs

Girault, Alain 05 September 2006 (has links) (PDF)
Je présente dans ce document mes résultats de recherche sur la conception sûre de systèmes embarqués sûrs. La première partie concerne la répartition automatique de programmes synchrones. Le caractère automatique de la répartition apporte un réel degré de sûreté dans la conception de systèmes répartis car c'est la partie la plus délicate de la spécification qui est automatisée. Grâce à cela, l'absence d'inter-blocage et l'équivalence fonctionnelle entre le programme source centralisé et le programme final réparti peuvent être formellement démontrées. La deuxième partie traite le sujet de l'ordonnancement et de la répartition de graphes de tâches flots-de-données sur des architectures à mémoire répartie, avec contraintes de tolérance aux fautes et de fiabilité. Je présente principalement des heuristiques d'ordonnancement statique multiprocesseur avec pour but la tolérance aux fautes et la fiabilité des systèmes, mais également l'utilisation de méthodes formelles telles que la synthèse de contrôleurs discrets ou les transformations automatiques de programmes. Enfin, la troisième partie concerne les autoroutes automatisées, avec deux volets : la commande longitudinale de véhicules autonomes et les stratégies d'insertion dans les autoroutes automatisées.
123

Une approche compositionnelle pour la modélisation et l'analyse des composants systemC au niveau TLM et au niveau des Delta Cycles / A Stepwise Compositional Approach to Model and Analyze SystemC Designs at the Transactional Level and the Delta Cycle Level

Harrath, Nesrine 04 November 2014 (has links)
Les systèmes embarqués sont de plus en plus intégrés dans les applications temps réel actuelles. Ils sont généralement constitués de composants matériels et logiciels profondément Intégrés mais hétérogènes. Ces composants sont développés sous des contraintes très strictes. En conséquence, le travail des ingénieurs de conception est devenu plus difficile. Pour répondre aux normes de haute qualité dans les systèmes embarqués de nos jours et pour satisfaire aux besoins quotidiens de l'industrie, l'automatisation du processus de développement de ces systèmes prend de plus en plus d'ampleur. Un défi majeur est de développer une approche automatisée qui peut être utilisée pour la vérification intégrée et la validation de systèmes complexes et hétérogènes.Dans le cadre de cette thèse, nous proposons une nouvelle approche compositionnelle pour la modélisation et la vérification des systèmes complexes décrits en langage SystemC. Cette approche est basée sur le modèle des SystemC Waiting State Automata (WSA). Les SystemC Waiting State Automata sont des automates permettant de modéliser le comportement abstrait des systèmes matériels et logiciels décrits en SystemC tout en préservant la sémantique de l'ordonnanceur SystemC au niveau des cycles temporels et au niveau des delta-cycles. Ce modèle permet de réduire la complexité de la modélisation des systèmes complexes due au problème de l'explosion combinatoire tout en restant fidèle au système initial. Ce modèle est compositionnel et supporte le rafinement. De plus, il est étendu par des paramètres temps ainsi que des compteurs afin de prendre en compte les aspects relatifs à la temporalité et aux propriétés fonctionnelles comme notamment la qualité de service. Nous proposons ensuite une chaîne de construction automatique des WSAs à partir de la description SystemC. Cette construction repose sur l'exécution symbolique et l'abstraction des prédicats. Nous proposons un ensemble d'algorithmes de composition et de réduction de ces automates afin de pouvoir étudier, analyser et vérifier les comportements concurrents des systèmes décrits ainsi que les échanges de données entre les différents composants. Nous proposons enfin d'appliquer notre approche dans le cadre de la modélisation et la simulation des systèmes complexes. Ensuite l'expérimenter pour donner une estimation du pire temps d'exécution (worst-case execution time (WCET)) en utilisant le modèle du Timed SystemC WSA. Enfin, on définit l'application des techniques du model checking pour prouver la correction de l'analyse abstraite de notre approche. / Embedded systems are increasingly integrated into existing real-time applications. They are usually composed of deeply integrated but heterogeneous hardware and software components. These components are developed under strict constraints. Accordingly, the work of design engineers became more tricky and challenging. To meet the high quality standards in nowadays embedded systems and to satisfy the rising industrial demands, the automatization of the developing process of those systems is gaining more and more importance. A major challenge is to develop an automated approach that can be used for the integrated verification and validation of complex and heterogeneous HW/SW systems.In this thesis, we propose a new compositional approach to model and verify hardware and software written in SystemC language. This approach is based on the SystemC Waiting State Automata (WSA). The SystemC Waiting State Automata are used to model the abstract behavior of hardware or software systems described in SystemC. They preserve the semantics of the SystemC scheduler at the temporal and the delta-cycle level. This model allows to reduce the complexity of the modeling process of complex systems due to the problem of state explosion during modeling while remaining faithful to the original system. The SystemC waiting state automaton is also compositional and supports refinement. In addition, this model is extended with parameters such as time and counters in order to take into account further aspects like temporality and other extra-functional properties such as QoS.In this thesis, we propose a stepwise approach on how to automatically extract the SystemC WSAs from SystemC descriptions. This construction is based on symbolic execution together with predicate abstraction. We propose a set of algorithms to symbolically compose and reduce the SystemC WSAs in order to study, analyze and verify concurrent behavior of systems as well as the data exchange between various components. We then propose to use the SystemC WSA to model and simulate hardware and software systems, and to compute the worst cas execution time (WCET) using the Timed SystemC WSA. Finally, we define how to apply model checking techniques to prove the correctness of the abstract analysis.
124

Un environnement de simulation pour la validation de spécifications B événementiel

Yang, Faqing 29 November 2013 (has links) (PDF)
Cette thèse porte sur la spécification, la vérification et la validation de systèmes critiques à l'aide de méthodes formelles, en particulier, B événementiel. Nous avons travaillé sur l'utilisation de B événementiel pour étudier des algorithmes de contrôle du platooning, à partir d'une version 1D simplifiée vers une version 2D plus réaliste. L'analyse critique du modèle du platooning en 1D a découvert certaines anomalies. La difficulté d'exprimer les théorèmes de deadlock-freeness dans B événementiel nous a motivé pour développer un outil, le générateur de théorèmes de deadlock-freeness, pour construire automatiquement ces théorèmes. Notre évaluation a confirmé que les preuves mathématiques ne sont pas suffisantes pour vérifier la correction d'une spécification formelle : une spécification formelle doit aussi être validée. Nous pensons que les activités de validation, comme les activités de vérification, doivent être associées à chaque raffinement. Pour ce faire, nous avons besoin de meilleurs outils de validation. Certains outils d'exécution existants échouent pour certains modèles non-déterministes exprimés en B événementiel. Nous avons donc conçu et implanté un nouvel outil d'exécution, JeB, un environnement de simulation en JavaScript pour B événementiel. JeB permet aux utilisateurs d'insérer du code sûr à la main pour fournir des calculs déterministes lorsque la traduction automatique échoue. Pour atteindre cet objectif, nous avons défini des obligations de preuve qui garantissent la correction de simulations par rapport au modèle formel.
125

Formal framework for modelling and verifying globally asynchronous locally synchronous systems / Un environnement formel pour modéliser et vérifier les systèmes globalement asynchrones et localement synchrones

Jebali, Fatma 12 September 2016 (has links)
Un système GALS (Globalement Asynchrone, Localement Synchrone) est un ensemble de composants synchrones qui évoluent en même temps, chacun à propre rythme, et qui communiquent de manière asynchrone. Cette thèse propose un environnement formel de modélisation et de vérification dédié aux systèmes GALS, en se focalisant sur le comportement asynchrone.Notre environnement s’appuie sur un langage formel que nous avons conçu nommé GRL (GALS Représentation Language). GRL permet la spécification comportementale des composants synchrones, de la communication asynchrone, et des contraintes sur les rythmes des composants ainsi que sur les valeurs que prennent les entrées des composants. Pour analyser les spécifications GRL, nous utilisons CADP, une boîte à outils logicielle permettant la vérification de processus concurrents asynchrones par des techniques d'exploration d’espaces d’états. Dans ce but, nous avons défini une traduction de GRL vers LNT, un langage de spécification supporté par CADP. La traduction est implémentée dans un outil appelé GRL2LNT, permettant ainsi la génération automatique d’espaces d'états à partir de spécifications GRL.Pour permettre la vérification formelle des spécifications GRL, nous avons conçu un langage de propriétés nommé muGRL, qui est interprété sur les espaces d’états de GRL. Le langage muGRL est basé sur un ensemble de patrons qui capturent les propriétés des systèmes concurrents et des systèmes GALS, réduisant ainsi la complexité d'utiliser les logiques temporelles classiques. La sémantique de muGRL est définie par traduction vers MCL, le langage de logique temporelle fourni par CADP. Enfin, nous illustrons l’usage de GRL, muGRL et CADP pour la modélisation et la vérification d’applications GALS concrètes, comprenant des études de cas industrielles. / A GALS (Globally Asynchronous, Locally Synchronous) system consists of several synchronouscomponents that evolve concurrently, each with its own pace, and communicatealtogether asynchronously. This thesis proposes a formal modelling and verificationframework dedicated to GALS systems, with a focus on the asynchronous behaviour.As a cornerstone of our framework, we have designed a formal language, named GRL(GALS Representation Language). GRL enables the behavioural specification of synchronouscomponents, asynchronous communication, and constraints involving bothcomponent paces and the data carried by component inputs. To analyse GRL specifications,we took advantage of the CADP software toolbox for the verification of asynchronousconcurrent processes, using state space exploration techniques. For this purpose,we defined a translation from GRL to the LNT specification language supportedby CADP. The translation was implemented by a tool named GRL2LNT, thus enablingstate spaces to be automatically derived from GRL specifications.To enable the formal verification of GRL specifications, we designed a property specificationlanguage, named muGRL, which is interpreted on GRL state spaces. The muGRLlanguage is based on a set of patterns capturing properties of concurrent and GALSsystems, which reduces the complexity of using full-fledged temporal logics. The semanticsof muGRL are defined by a translation into the MCL temporal logic supported byCADP. Finally, we illustrated how GRL, muGRL, and CADP can be applied to modeland verify concrete GALS applications, including industrial case-studies.
126

Transformations de graphes pour la modélisation géométrique à base topologique / Graph transformations for topology-based geometric modelling

Bellet, Thomas 10 July 2012 (has links)
De nombreux domaines comme le jeu vidéo, l’architecture, l’ingénierie ou l’archéologie font désormais appel à la modélisation géométrique. Les objets à représenter sont de natures diverses, et leurs opérations de manipulation sont spécifiques. Ainsi, les modeleurs sont nombreux car tous spécialisés à leur domaine d’application. Or ils sont à la fois chers à développer, souvent peu robustes, et difficilement extensibles. Nous avons proposé dans la thèse l’approche alternative suivante :– fournir un langage dédié à la modélisation qui permet de définir les opérations quelque soit le domaine d’application ; dans ce langage, les objets sont représentés avec le modèle topologique des cartes généralisées, dont nous avons étendu la définition aux plongements ; les opérations sont elles définies par des règles de transformation de graphes, issues de la théorie des catégorie ;– garantir les opérations définies dans le langage à l’aide de conditions de cohérence ; une opération dont la définition vérifie ces conditions ne produit pas d’anomalie ;– développer un noyau de modeleur générique qui interprète ce langage ; les opérations définies sont directement appliquées dans le modeleur, sans implantation dans un langage de programmation ; l’outil assure également la vérification automatique des conditions du langage pour prévenir un utilisateur lorsqu’il propose une opération incohérente.Le langage et le modeleur développés se sont révélés performants à la fois en termes de temps de développement et en termes de temps machine. L’implantation d’une nouvelle opération par une règle ne prend que quelques minutes à l’aide des conditions du langage, au contraire de l’approche classi / Geometric modeling is now involved in many fields such as: video games, architecture, engineering and archaeology. The represented objects are very different from one field to another, and so are their modeling operations. Furthermore, many specific types of modeling software are designed for high programing costs, but with a relatively low rate of effectiveness.The following is an alternative approach:– we have conceived a dedicated language for geometric modeling that will allow us to define any operation of any field; objects in this language are defined with the topological model of generalized maps, this definition has been extended to the embedding informations; here the operations are defined as graph transformation rules which originate from the category theory;– we have ensured operation definitions with consistency conditions; these operations that satisfy those conditions do not generate anomalies; – we have designed generic modeling software to serve as an interpreter of this language; the operation definitions are directly applied without the need for more programing; the software also automatically checks the language conditions and warns the user if he designs a non-consistent operation.The provided language and software prove to be efficient, and all for a low programing cost. Designing a new operation takes only minutes thanks to the language conditions, as opposed to hours of programming and debugging with the past approach.
127

A stepwise compositional approach to model and analyze system C designs at the transactional level and the delta cycle level / Une approche compositionnelle pour la modélisation et l'analyse des composants systemC au niveau TLM et au niveau des Delta Cycles

Harrath, Nesrine 04 November 2014 (has links)
Les systèmes embarqués sont de plus en plus intégrés dans les applications temps réel actuelles. Ils sont généralement constitués de composants matériels et logiciels profondément Intégrés mais hétérogènes. Ces composants sont développés sous des contraintes très strictes. En conséquence, le travail des ingénieurs de conception est devenu plus difficile. Pour répondre aux normes de haute qualité dans les systèmes embarqués de nos jours et pour satisfaire aux besoins quotidiens de l'industrie, l'automatisation du processus de développement de ces systèmes prend de plus en plus d'ampleur. Un défi majeur est de développer une approche automatisée qui peut être utilisée pour la vérification intégrée et la validation de systèmes complexes et hétérogènes.Dans le cadre de cette thèse, nous proposons une nouvelle approche compositionnelle pour la modélisation et la vérification des systèmes complexes décrits en langage SystemC. Cette approche est basée sur le modèle des SystemC Waiting State Automata (WSA). Les SystemC Waiting State Automata sont des automates permettant de modéliser le comportement abstrait des systèmes matériels et logiciels décrits en SystemC tout en préservant la sémantique de l'ordonnanceur SystemC au niveau des cycles temporels et au niveau des delta-cycles. Ce modèle permet de réduire la complexité de la modélisation des systèmes complexes due au problème de l'explosion combinatoire tout en restant fidèle au système initial. Ce modèle est compositionnel et supporte le rafinement. De plus, il est étendu par des paramètres temps ainsi que des compteurs afin de prendre en compte les aspects relatifs à la temporalité et aux propriétés fonctionnelles comme notamment la qualité de service. Nous proposons ensuite une chaîne de construction automatique des WSAs à partir de la description SystemC. Cette construction repose sur l'exécution symbolique et l'abstraction des prédicats. Nous proposons un ensemble d'algorithmes de composition et de réduction de ces automates afin de pouvoir étudier, analyser et vérifier les comportements concurrents des systèmes décrits ainsi que les échanges de données entre les différents composants. Nous proposons enfin d'appliquer notre approche dans le cadre de la modélisation et la simulation des systèmes complexes. Ensuite l'expérimenter pour donner une estimation du pire temps d'exécution (worst-case execution time (WCET)) en utilisant le modèle du Timed SystemC WSA. Enfin, on définit l'application des techniques du model checking pour prouver la correction de l'analyse abstraite de notre approche. / Embedded systems are increasingly integrated into existing real-time applications. They are usually composed of deeply integrated but heterogeneous hardware and software components. These components are developed under strict constraints. Accordingly, the work of design engineers became more tricky and challenging. To meet the high quality standards in nowadays embedded systems and to satisfy the rising industrial demands, the automatization of the developing process of those systems is gaining more and more importance. A major challenge is to develop an automated approach that can be used for the integrated verification and validation of complex and heterogeneous HW/SW systems.In this thesis, we propose a new compositional approach to model and verify hardware and software written in SystemC language. This approach is based on the SystemC Waiting State Automata (WSA). The SystemC Waiting State Automata are used to model the abstract behavior of hardware or software systems described in SystemC. They preserve the semantics of the SystemC scheduler at the temporal and the delta-cycle level. This model allows to reduce the complexity of the modeling process of complex systems due to the problem of state explosion during modeling while remaining faithful to the original system. The SystemC waiting state automaton is also compositional and supports refinement. In addition, this model is extended with parameters such as time and counters in order to take into account further aspects like temporality and other extra-functional properties such as QoS.In this thesis, we propose a stepwise approach on how to automatically extract the SystemC WSAs from SystemC descriptions. This construction is based on symbolic execution together with predicate abstraction. We propose a set of algorithms to symbolically compose and reduce the SystemC WSAs in order to study, analyze and verify concurrent behavior of systems as well as the data exchange between various components. We then propose to use the SystemC WSA to model and simulate hardware and software systems, and to compute the worst cas execution time (WCET) using the Timed SystemC WSA. Finally, we define how to apply model checking techniques to prove the correctness of the abstract analysis.
128

Approches formelles pour l'analyse de la performabilité des systèmes communicants mobiles : Applications aux réseaux de capteurs sans fil / Formal approaches for performability analysis of communicating systems : an application to wireless sensor networks

Abo, Robert 06 December 2011 (has links)
Nous nous intéressons à l'analyse des exigences de performabilité des systèmes communicants mobiles par model checking. Nous modélisons ces systèmes à l'aide d'un formalisme de haut niveau issu du π-calcul, permettant de considérer des comportements stochastiques, temporels, déterministes, ou indéterministes. Cependant, dans le π-calcul, la primitive de communication de base des systèmes est la communication en point-à-point synchrone. Or, les systèmes mobiles, qui utilisent des réseaux sans fil, communiquent essentiellement par diffusion locale. C'est pourquoi, dans un premier temps, nous définissons la communication par diffusion dans le π-calcul, afin de mieux modéliser les systèmes que nous étudions. Nous proposons d'utiliser des versions probabilistes et stochastiques de l'algèbre que nous avons défini, pour permettre des études de performance. Nous en définissons une version temporelle permettant de considérer le temps dans les modèles. Mais l'absence d'outils d'analyse des propriétés sur des modèles spécifiés en une algèbre issue du π-calcul est un obstacle majeur à notre travail. La définition de règles de traduction en langage PRISM, nous permet de traduire nos modèles, en modèles de bas niveau supports du model checking, à savoir des chaînes de Markov à temps discret, à temps continu, des automates temporisés, ou des automates temporisés probabilistes. Nous avons choisi l'outil PRISM car, à notre connaissance, dans sa dernière version, il est le seul outil à supporter les formalismes de bas niveau que nous venons de citer, et ainsi il permet de réaliser des études de performabilité complètes. Cette façon de procéder nous permet de pallier à l'absence d'outils d'analyse pour nos modèles. Par la suite, nous appliquons ces concepts théoriques aux réseaux de capteurs sans fil mobiles. / We are interested in analyzing the performability requirements of mobile communication systems by using model checking techniques. We model these systems using a high-level formalism derived from the π-calculus, for considering stochastic, timed, deterministic or indeterministic behaviors. However, in the π-calculus, the basic communication primitive of systems is the synchronous point-to-point communication. However, mobile systems that use wireless networks, mostly communicate by local broadcast. Therefore, we first define the broadcast communication into the π-calculus, to better model the systems we study. We propose to use probabilistic and stochastic versions of the algebra we have defined to allow performance studies. We define a temporal version to consider time in the models. But the lack of tools for analyzing properties of models specified with π-calculus is a major obstacle to our work and its objectives. The definition of translation rules into the PRISM language allows us to translate our models in low-level models which can support model checking, namely discrete time, or continuous time Markov chains, timed automata, or probabilistic timed automata. We chose the PRISM model checker because, in our best knowledge, in its latest version, it is the only tool that supports the low-level formalisms that we have previously cited, and thus, makes it possible to realize complete performability studies. This approach allows us to overcome the lack of model checkers for our models. Subsequently, we apply these theoretical concepts to analyse performability of mobile wireless sensor networks.
129

ScaleSem : model checking et web sémantique

Gueffaz, Mahdi 11 December 2012 (has links) (PDF)
Le développement croissant des réseaux et en particulier l'Internet a considérablement développé l'écart entre les systèmes d'information hétérogènes. En faisant une analyse sur les études de l'interopérabilité des systèmes d'information hétérogènes, nous découvrons que tous les travaux dans ce domaine tendent à la résolution des problèmes de l'hétérogénéité sémantique. Le W3C (World Wide Web Consortium) propose des normes pour représenter la sémantique par l'ontologie. L'ontologie est en train de devenir un support incontournable pour l'interopérabilité des systèmes d'information et en particulier dans la sémantique. La structure de l'ontologie est une combinaison de concepts, propriétés et relations. Cette combinaison est aussi appelée un graphe sémantique. Plusieurs langages ont été développés dans le cadre du Web sémantique et la plupart de ces langages utilisent la syntaxe XML (eXtensible Meta Language). Les langages OWL (Ontology Web Language) et RDF (Resource Description Framework) sont les langages les plus importants du web sémantique, ils sont basés sur XML.Le RDF est la première norme du W3C pour l'enrichissement des ressources sur le Web avec des descriptions détaillées et il augmente la facilité de traitement automatique des ressources Web. Les descriptions peuvent être des caractéristiques des ressources, telles que l'auteur ou le contenu d'un site web. Ces descriptions sont des métadonnées. Enrichir le Web avec des métadonnées permet le développement de ce qu'on appelle le Web Sémantique. Le RDF est aussi utilisé pour représenter les graphes sémantiques correspondant à une modélisation des connaissances spécifiques. Les fichiers RDF sont généralement stockés dans une base de données relationnelle et manipulés en utilisant le langage SQL ou les langages dérivés comme SPARQL. Malheureusement, cette solution, bien adaptée pour les petits graphes RDF n'est pas bien adaptée pour les grands graphes RDF. Ces graphes évoluent rapidement et leur adaptation au changement peut faire apparaître des incohérences. Conduire l'application des changements tout en maintenant la cohérence des graphes sémantiques est une tâche cruciale et coûteuse en termes de temps et de complexité. Un processus automatisé est donc essentiel. Pour ces graphes RDF de grande taille, nous suggérons une nouvelle façon en utilisant la vérification formelle " Le Model checking ".Le Model checking est une technique de vérification qui explore tous les états possibles du système. De cette manière, on peut montrer qu'un modèle d'un système donné satisfait une propriété donnée. Cette thèse apporte une nouvelle méthode de vérification et d'interrogation de graphes sémantiques. Nous proposons une approche nommé ScaleSem qui consiste à transformer les graphes sémantiques en graphes compréhensibles par le model checker (l'outil de vérification de la méthode Model checking). Il est nécessaire d'avoir des outils logiciels permettant de réaliser la traduction d'un graphe décrit dans un formalisme vers le même graphe (ou une adaptation) décrit dans un autre formalisme
130

Coverability and expressiveness properties of well-structured transition systems

Geeraerts, Gilles 20 April 2007 (has links)
Ces cinquante dernières annéees, les ordinateurs ont occupé une place toujours plus importante dans notre vie quotidienne. On les retrouve aujourd’hui présents dans de nombreuses applications, sous forme de systèmes enfouis. Ces applications sont parfois critiques, dans la mesure où toute défaillance du système informatique peut avoir des conséquences catastrophiques, tant sur le plan humain que sur le plan économique. <p>Nous pensons par exemple aux systèmes informatiques qui contrôlent les appareils médicaux ou certains systèmes vitaux (comme les freins) des véhicules automobiles. <p>Afin d’assurer la correction de ces systèmes informatiques, différentes techniques de vérification Assistée par Ordinateur ont été proposées, durant les trois dernières <p>décennies principalement. Ces techniques reposent sur un principe commun: donner une description formelle tant du système que de la propriété qu’il doit respecter, et appliquer une méthode automatique pour prouver que le système respecte la propriété. <p>Parmi les principaux modèles aptes à décrire formellement des systèmes informatiques, la classe des systèmes de transition bien structurés [ACJT96, FS01] occupe une place importante, et ce, pour deux raisons essentielles. Tout d’abord, cette classe généralise plusieurs autres classes bien étudiées et utiles de modèles à espace <p>d’états infini, comme les réseaux de Petri [Pet62](et leurs extensions monotones [Cia94, FGRVB06]) ou les systèmes communiquant par canaux FIFO avec pertes [AJ93]. Ensuite, des problèmes intéressants peuvent être résolus algorithmiquement sur cette classe. Parmi ces problèmes, on trouve le probléme de couverture, auquel certaines propriétés intéressantes de sûreté peuvent être réduites. <p>Dans la première partie de cette thèse, nous nous intéressons au problème de couverture. Jusqu’à présent, le seul algorithme général (c’est-à-dire applicable à n’importe quel système bien structuré) pour résoudre ce problème était un algorithme dit en arrière [ACJT96] car il calcule itérativement tous les états potentiellement non-sûrs et vérifie si l’état initial du système en fait partie. Nous proposons Expand, Enlarge and Check, le premier algorithme en avant pour résoudre le problème de couverture, qui calcule les états potentiellement accessibles du système et vérifie si certains d’entre eux sont non-sûrs. Cette approche est plus efficace en pratique, comme le montrent nos expériences. Nous présentons également des techniques permettant d’accroître l’efficacité de notre méthode dans le cas où nous analysons des réseaux de Petri (ou <p>une de leurs extensions monotones), ou bien des systèmes communiquant par canaux FIFO avec pertes. Enfin, nous nous intéressons au calcul de l’ensemble de couverture pour les réseaux de Petri, un objet mathématique permettant notamment de résoudre le problème de couverture. Nous étudions l’algorithme de Karp & Miller [KM69], une solution classique pour calculer cet ensemble. Nous montrons qu’une optimisation de cet algorithme présenté dans [Fin91] est fausse, et nous proposons une autre solution totalement neuve, et plus efficace que la solution de Karp & Miller. <p>Dans la seconde partie de la thèse, nous nous intéressons aux pouvoirs d’expression des systèmes bien structurés, tant en terme de mots infinis que de mots finis. Le pouvoir d’expression d’une classe de systèmes est, en quelque sorte, une mesure de la diversité des comportements que les modèles de cette classe peuvent représenter. En ce qui concerne les mots infinis, nous étudions les pouvoirs d’expression des réseaux de Petri et de deux de leurs extensions (les réseaux de Petri avec arcs non-bloquants et les réseaux de Petri avec arcs de transfert). Nous montrons qu’il existe une hiérarchie stricte entre ces différents pouvoirs d’expression. Nous obtenons également des résultats partiels concernant le pouvoir d’expression des réseaux de Petri avec arcs de réinitialisation. En ce qui concerne les mots finis, nous introduisons la classe des langages bien structurés, qui sont des langages acceptés par des systèmes de transition bien structurés étiquettés, où l’ensemble des états accepteurs est clos par le haut. Nous prouvons trois lemmes de pompage concernant ces langages. Ceux-ci nous permettent de réobtenir facilement des résultats classiques de la littérature, ainsi que plusieurs nouveaux résultats. En particulier, nous prouvons, comme dans le cas des mots infinis, qu’il existe une hiérarchie stricte entre les pouvoirs d’expression des extensions des réseaux de Petri considérées. / Doctorat en sciences, Spécialisation Informatique / info:eu-repo/semantics/nonPublished

Page generated in 0.0683 seconds