• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 180
  • 74
  • 17
  • Tagged with
  • 256
  • 183
  • 122
  • 81
  • 67
  • 49
  • 43
  • 40
  • 38
  • 35
  • 30
  • 30
  • 24
  • 24
  • 24
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Les histones déméthylases JMJD2A et JARID1A/B dans la régulation transcriptionnelle de la prolifération cellulaire / The histone demethylases JMJD2A, JARID1A and B in the transcriptional regulation of cell proliferation

Salifou, Kader 28 April 2015 (has links)
L'ADN des cellules eucaryotes est enroulé autour de protéines appelées histones pour former la chromatine. Le niveau de compaction de la chromatine est dynamique. Ceci permet de réguler via l'accessibilité de l'ADN, les processus comme la transcription. Les histones peuvent subir des modifications post traductionnelles comme la méthylation, qui influencent le niveau de compaction de la chromatine. Par exemple, au niveau des promoteurs des gènes, la méthylation sur la lysine 9 de l'histone H3 (H3K9) est associée à la répression transcriptionnelle, tandis que la méthylation sur la lysine 4 (H3K4) est associée a l'activation transcriptionnelle. Ces marques sont mises en place par des histones méthyltransférases et enlevées par des histones déméthylases qui sont spécifiques des résidus méthylés. Ma thèse a porté sur l'étude d'histone déméthylases dans la régulation transcriptionnelle de gènes clé de la prolifération cellulaire, les gènes cibles de E2F et l'ADN ribosomique. Les facteurs E2Fs régulent des gènes comme CCNE et CDC6 impliques dans l'entrée et la progression en phase S. Ces gènes sont activés au début de la phase S. Le contrôle de la transcription de ces gènes est crucial pour un cycle cellulaire normal et leur dérégulation est associée à l'apparition de cancers. La répression et l'activation des gènes cibles de E2F au cours du cycle cellulaire fait intervenir le contrôle de la méthylation des résidus H3K4 et H3K9. Cependant, les histone déméthylases impliquées sont mal connues. Nous avons montré que les histones déméthylases JARID1A et JARID1B, spécifiques de H3K4, régulent la transcription de CCNE et CDC6 en phase S. JARID1A et JARID1B sont recrutées au promoteur de ces gènes. Elles sont importantes pour limiter leur activation lors de la progression en phase S. Cette étude montre pour la première fois l'implication de ces histones déméthylases dans la régulation fine des gènes cibles de E2F au cours du cycle cellulaire. La transcription des gènes ribosomiques ou ADNr par l'ARN Polymérase I (Pol-I) est la première étape de la biogénèse des ribosomes. Elle a lieu dans les nucléoles. Ce processus est étroitement lié à la croissance et la prolifération cellulaire. Une transcription Pol-I accrue et des nucléoles hypertrophiés sont des caractéristiques communes à un grand nombre de cellules cancéreuses. La transcription Pol-I est adaptée à la disponibilité en facteurs de croissance. Ainsi, elle est réprimée lorsque les cellules sont privées en facteurs de croissance et activée en leur présence. Cette réponse est sous le contrôle de cascades de signalisation cellulaire comme la voie Phosphatidyl-Inositol-3-Phosphate (PI3K). Il est connu que des événements dynamiques de méthylation d'histones participent à cette régulation. Cependant, on sait peu de choses sur comment les voies de signalisation régulent ces événements. En collaboration avec l'équipe du Dr. Konstantin Panov, nous avons observé que l'histone déméthylase JMJD2A, spécifique de H3K9, est présente dans les nucléoles de cellules humaines. JMJD2A, via sa capacité à déméthyler H3K9, est requise pour activer la transcription Pol-I en réponse aux facteurs de croissance. Nous montrons également que PI3K régule cette réponse chromatinienne en déclenchant l'accumulation de JMJD2A dans les nucléoles en réponse aux facteurs de croissance. Cette étude indique que la régulation de la localisation subnucléraire de JMJD2A en réponse à la voie PI3K est un des mécanismes par lesquels les cellules adaptent leur capacité de synthèse protéique à la disponibilité de facteurs de croissance. Mes travaux de thèse renforcent notre compréhension des mécanismes impliquant des histones déméthylases dans la régulation de la prolifération cellulaire. Comprendre ces mécanismes est crucial et permettra de cibler ces enzymes dans le traitement des pathologies de la prolifération cellulaire comme le cancer. / In eukaryote nuclei, DNA is wrapped around histone proteins. This structure is called the chromatin. The compaction level of chromatin is highly dynamic. This allows the regulation of gene transcription which requires free access to the DNA. Histone proteins undergo several post translational modifications including methylation that impact chromatin compaction. For example, at genes promoters, methylation on the lysine 9 of histone H3 (H3K9) is associated with chromatin compaction and thereby transcription repression, whereas methylation on histone H3 lysine 4 (H3K4) is associated with transcriptional activation. Histone methylation is set by enzymes called histone methyltransferases and removed by histone demethylases which are specific for methylated residues. During my PhD, I studied the role of histone demethylases in the transcriptional regulation of cell proliferation master genes, E2F-regulated genes and rDNA transcription. E2F transcription factors regulate genes like CCNE or CDC6 involved in entry and progression through S phase. Those genes must be activated at the onset of S phase. The transcriptional control of those genes is crucial for a normal cell cycle, and their deregulation is associated with cancer development. Histone methylation events are involved in the repression and activation of E2F target genes during cell cycle progression. However the histone demethylases involved are still unclear. We have shown that the H3K4-specific histone demethylases JARID1A and JARID1B are involved in the fine-tuning of CCNE and CDC6 transcription during S phase. JARID1A and JARID1B are recruited on the promoter of those genes and help limiting their activation at the beginning of S phase. This study shows for the first time the role of those histone demethylases in the fine tuned regulation of E2F targets genes during S phase. Ribosomal DNA (rDNA) transcription is the first step of ribosome biogenesis. rDNA is transcribed in the nucleolus by RNA polymerase I (Pol-I). Pol-I transcription is tightly linked to cell growth and proliferation. High levels of Pol-I transcription along with hypertrophied nucleoli is a hallmark of several cancers cells. Pol-I transcription must be regulated according to the availability of growth factors. It is repressed when the cells are deprived of growth factors and activated when growth factors are available. This regulation is under the control of cellular signaling pathways including the Phosphatidyl-Inositol-3-Kinase (PI3K) pathway. Histone methylation events are known to play a role in this regulation. However little is known about how the cell signaling pathways modulate the chromatin response in this process. In collaboration with the team of Dr. Konstantin Panov, we observed that the H3K9-specific histone demethylase JMJD2A is present in the nucleoli of human cells. We showed that JMJD2A, through its ability to demethylate H3K9, is required for the activation of Pol-I transcription in response to growth factors. We further show that PI3K regulate this chromatin response by triggering accumulation of JMJD2A in the nucleoli in response to growth factors. This study demonstrates a yet unknown role for JMJD2A in Pol-I transcription and suggests that the control of JMJD2A localization by the PI3K pathway is a crucial mechanism by which cells adapt protein synthesis to the availability of growth factors. My PhD work helps strengthening our understanding of the mechanisms that involve histone demethylases in the regulation of cell proliferation genes. Understanding those mechanisms is crucial as it might help targeting those enzymes for the treatment of cell proliferation-associated diseases like cancer.
22

Analysis of genomic DNA methylation variations and roles during grape berry ripening / Analyse des variations et du rôle de la méthylation de l'ADN génomique lors de la maturation des baies de raisin

Kong, Junhua 25 June 2019 (has links)
La vigne est une plante cultivée dans le monde entier dont l’importance économique est principalement liée à la production de vin. La baie de raisin est également l’un des principaux modèles d’étude pour les fruits non-climatériques notamment pour l’étude des mécanismes contrôlant le mûrissement des baies. Le développement de la baie de raisin est caractérisé par deux phases de croissance séparées par une phase de latence se produisant au moment de la véraison. La baie de raisin est composée de trois tissus principaux: la peau, la pulpe et les graines. La peau et la pulpe présentent une structure et une composition en métabolites distinctes et contribuent de manière différente à la qualité du vin, la pulpe fournissant essentiellement le sucre, les acides aminés et organiques alors que la peau est riche en anthocyanes. A l'heure actuelle, les mécanismes moléculaires impliqués dans le contrôle de la maturation des baies de raisin sont encore mal compris. Si l'ABA, le sucre et différents facteurs de transcription jouent un rôle important dans le contrôle de cette phase de développement, les mécanismes épigénétiques, en particulier la méthylation de l’ADN, apparaissent aussi comme des régulateurs importants du développement et du mûrissement des fruits charnus. Dans ce contexte, Le projet de thèse présenté vise à analyser le rôle de la méthylation de l’ADN (1) dans la maturation des baies de raisin et (2) dans la synthèse des anthocyanes en utilisant comme système modèle des cellules de baie de raisin cultivées in vitro.La culture in vitro de baies de raisin en présence d’inhibiteurs de la méthylation de l'ADN, aboutit à une inhibition de la maturation, suggérant que la méthylation de l’ADN joue un rôle crucial pour cette étape du développement chez la vigne. La pellicule et la chair de baies de raisin récoltées à divers stades de développement ont ensuite été analysées séparément pour déterminer les variations des transcriptomes, de l’abondance de différents métabolites, et de la méthylation de l'ADN. Les principaux résultats indiquent des variations des métabolites et du transcriptome, avec des spécificités liés au tissu analysé. En outre, l'analyse des variations de méthylation de l'ADN à deux stades de développement dans chacun de ces deux tissus révèle l’existence de variations de méthylation spécifiques à chaque tissu, tandis que les variations communes aux deux tissus restent limitées. Ces résultats suggèrent un contrôle de la méthylation de l’ADN spécifique à chaque tissu lors de la maturation de la baie. Cependant les régions différentiellement méthylées identifiées dans chaque tissu, ne sont pas associées à des gènes exprimés différentiellement au cours de la maturation des baies, ce qui pose la question du rôle de la méthylation de l’ADN dans le contrôle de l’expression génique dans les baies.Pour analyser le rôle de la méthylation de l’ADN dans le contrôle de la synthèse des anthocyanes, nous avons utilisé des suspensions de cellules de raisin du génotype Gamay Teinturier (GT), connues pour accumuler des anthocyanes lorsqu’elles sont cultivées à la lumière. L’utilisation de la zébularine, un inhibiteur de la méthylation d’ADN, permet de stimuler l’accumulation d'anthocyanes dans les cellules GT en présence de lumière, et de l’induire à l’obscurité. Les traitements à la zébularine provoquent en outre une limitation de la croissance cellulaire, une modification de l’accumulation des sucres solubles et acides organiques ainsi qu’une reprogrammation importante du transcriptome. Ces résultats suggèrent un effet général de la zébularine sur les cellules GT plutôt qu’un effet spécifique sur l’accumulation d’anthocyanes.Dans l'ensemble, les résultats indiquent que la méthylation de l'ADN est importante pour le contrôle de la maturation des fruits de la vigne, bien que les mécanismes qui sous-tendent les variations de la méthylation et leurs rôles dans les différents tissus de la baie de raisin restent à préciser. / Grapevine is a worldwide cultivated fruit crop with high economic importance mainly because of its usage for vine production. Grape berry is also one of the main models for non-climacteric fruits to study the mechanisms controlling the ripening process. Grape berry development is characterized by two phases of rapid size increase separated by a lag phase at the time of ripening induction. Grape berries are composed of three main tissues, the peel, the pulp and the seeds. Peel and pulp present distinct structure and metabolite composition and contribute in a different way to wine quality, the pulp providing sugar, amino and organic acids whereas the peel is important for anthocyanins and other phenolic compound abundance. At the present time, the molecular mechanisms involved in the control of grape berry ripening are still poorly understood. Recent results indicate that both ABA and sugar may be important signals together with various transcription factors. In addition, epigenetic mechanisms are now emerging as important regulators of fleshy fruit development, DNA methylation being critically important for tomato, sweet range and strawberry ripening.The present project aims at analyzing the potential role of DNA methylation in the control grape berry ripening. It also investigates the potential role of DNA methylation in the synthesis of anthocyanins, a compound of primary importance in peel of red grape berries, using in vitro grown fruit cells. To address these questions, grape berries cultivated in vitro were treated with DNA methylation inhibitors. Treatments resulted in delayed and reduced grape berry ripening, therefore sustaining the idea that DNA methylation plays critical roles at this developmental step. Grape berries harvested at various developmental stages were then dissected and each tissue was separately analyzed for transcriptomic, metabolic and DNA methylation variations. Main results indicate significant and distinct metabolic and transcriptomic variations consistent with each tissue following specific modifications during ripening. In addition, analysis of DNA methylation variations at two developmental stages in each tissue indicates both common and tissue specific changes in DNA methylation patterns during fruit ripening. A very small proportion of DMRs is found similarly in the pup and the peel, but most are tissue specific, also consistent with tissue specific control at this developmental phase. Of note, among the different DMRs identified in each tissue, only a few were associated with differentially expressed genes (DEG) during ripening, whereas most were not, questioning the general role of DNA methylation in the control of gene expression at this developmental transition in grape.As Anthocyanins are the most abundant polyphenolic compounds in the skin of red grape berries, we used grape cell suspensions of the Gamay Teinturier genotype, that are known to accumulate anthocyanins when grown in light conditions, to analyze the potential role of DNA methylation in their synthesis. GT cells cultivated in light conditions were treated with the DNA methyltransferase inhibitor zebularine, they accumulate higher quantities of anthocyanins. Of note, GT cells grown in the absence of light do not accumulate anthocyanins. However, zebularine was sufficient to induce anthocyanin accumulation in the absence of light. Zebularine treatments had significant additional effects on grape cells including, cell growth limitation, and modification of soluble sugar, organic acid or stilbene accumulation, together with important transcriptomic reprogramming, consistent with a general effect on cells rather than a specific effect on anthocyanin accumulation.Taken together, results are consistent with DNA methylation being important in the control of grape fruit ripening, although the precise mechanisms underlying methylation variations and roles in grape berries remain to be deciphered.
23

Modifications épigénétiques de la méthylation de l'ADN induites par les phyto-oestrogènes du soja dans le cancer de la prostate

Adjakly, Mawussi 28 November 2012 (has links)
Le cancer de la prostate est une pathologie impliquant des facteurs divers comme l'hérédité, l'appartenance ethnique mais aussi des facteurs environnementaux. En effet, il a été démontré que certains micronutriments dont les phyto-oestrogènes contenus dans l'alimentation pouvaient avoir un rôle protecteur vis-à-vis de cette pathologie. Ces molécules seraient capables de moduler les mécanismes épigénétiques observés dans le cancer de la prostate. L'objectif de ce travail a été de déterminer si les phyto-oestrogènes du soja pouvaient induire la réversion de la méthylation d'oncosuppresseurs impliqués dans la cancérogenèse prostatique et par quelles voies moléculaires. Nos études, in vitro, réalisées sur des lignées continues de cancer de la prostate (DU-145, PC-3 et LNCaP) ont montré dans un premier temps, une diminution de la méthylation des gènes GSTP1, RASSF1A, EPHB2 et BRCA1 et une augmentation des protéines correspondantes, suite au traitement par la génistéine (40μM) et la daidzéine (110μM) pendant 48H. Dans un deuxième temps, une étude comparative entre l'effet des phyto-oestrogènes et l'oestradiol sur la méthylation de l'ADN d'un panel de 24 gènes a permis de mettre en évidence une régulation des mécanismes épigénétiques par les phyto-oestrogènes via la voie des Récepteurs aux oestrogènes. En conclusion, les phyto-oestrogènes agissent sur les mécanismes épigénétiques dans la cancérogenèse prostatique laissant supposer que ces molécules pourraient jouer un rôle préventif dans cette pathologie. / Prostate cancer is a disease caused by a multiple interacting factors such as family history of prostate cancer, age and ethnic origin. Environnemental factors play also a role in prostatic carcinogenesis events. Indeed, several studies have reported the efficiency of nutrients such as phytoestrogens to possess anticancer properties. It has been reported that these compounds may have the ability to induce the reversion of epigenetic modifications observed in prostate cancer cells. The aim of this work was to determine if soy isoflavone could reverse the DNA methylation of oncosuppressor which are hypermethylated in prostate cancer and through which metabolic pathways. Our in vitro studies were carried out on tree prostate cancer cell lines: DU-145, PC-3 and LNCaP. The qualitative and quantitative studies performed demonstrated a decrease of methylation percentage of GSTP1, RASSF1A, EPHB2 and BRCA1 after soy isoflavone treatment. In a second step, a comparative study between the effect of phytoestrogens and estradiol on the DNA methylation of a panel of 24 genes was performed. Our results has highlighted that the regulation of epigenetic mechanisms by phytoestrogens may be mediated via the estrogen receptor pathway. In conclusion, phytoestrogen act on epigenetics mechanisms on prostate carcinogenesis suggesting that these molecules may play a role in the prevention of this pathology.
24

ETUDE DES ALTÉRATIONS EPIGENETIQUES DES TUMEURS DES<br />ENFANTS : LE CAS DES ÉPENDYMOMES ET DES NEUROBLASTOMES

Michalowski, Mariana 15 November 2006 (has links) (PDF)
Au cours des dernières années, un nouveau mécanisme du développement tumoral a été décrit;<br />l'hyperméthylation des gènes suppresseurs de tumeur (GST). Les modifications « épigénétiques » ont été peu étudiées dans les cancers de l'enfant et aucune grande série de tumeurs pédiatriques existait avant 2002. Nous avons recherché ce type altérations dans deux groupes de tumeurs de l'enfant: les ependymomes et les neuroblastomes. Les ependymomes (EP) représentent la troisième tumeur la plus fréquente du système nerveux central (SNC) de l'enfant et n'a pas de marqueurs biologiques pronostiques identifiés. Le neuroblastome, quant à lui, est la tumeur solide extra crânienne la plus fréquente chez l'enfant et présente des anomalies génétiques et moléculaires qui ont été clairement liées au pronostic. Nos objectifs étaient de décrire un profil de méthylation de ces deux cancers de l'enfant et chercher des relations possibles avec l'évolution clinique. Dans la première étude, une série de 27 enfants avec un EP intracrânien et 7 avec papillome du plexus choroïde a été étudiée. Nous avons décrit et comparé le statut de méthylation de 19 gènes. Dans la deuxième étude, 62 neuroblastomes (NB) ont été évalués pour le statut de la méthylation de ces gènes. Nous n'avons pas trouvé de relation statistiquement significative entre la méthylation et l'évolution clinique, mais les méthylations ne semblent pas être distribuées sous une forme aléatoire dans les EP et les NB et peut représenter un mécanisme de développement et d'évolution tumorale. L'hyperméthylation a été corrélée au stade clinique des NB: stades 1, 2 et 4s étaient moins fréquemment méthylés que les stades 3 et 4 (p = 0.002). En conclusion, les résultats de nos séries indiquent que la méthylation des gènes suppresseurs peut avoir un rôle dans l'évolution et le développement des cancers de l'enfant.<br />L'étude des altérations épigénétiques est nécessaire pour améliorer la comprehension des mécanismes de la carcinogenèse dans les tumeurs pédiatriques. Ces altérations pourraient, donc, être utilisées comme des marqueurs de maladies ou d'évolutivité et les gènes méthylés pourraient être considérés comme des nouvelles cibles thérapeutiques.
25

Perturbation épigénétique du système IGF dans le placenta de nouveau-nés exposés à l'hyperglycémie maternelle / Epigenetic dysregulation of the igf system in placenta of newborns exposed to maternal hyperglycemia

Desgagné, Véronique January 2013 (has links)
L’exposition foetale à l’hyperglycémie maternelle (HGM), ainsi qu’un poids à la naissance aux deux extrémités du spectre (petit ou grand poids en fonction de l’âge gestationnel) sont deux conditions associées à un risque accru de développer des maladies cardiovasculaires et/ou métaboliques, tels l’obésité ou le diabète de type II, plus tard dans la vie. Le système IGF {Insulin-like growth factor) est un important régulateur du métabolisme et de la croissance foeto-placentaire. Une perturbation moléculaire précoce du système IGF pourrait donc être impliquée dans la programmation métabolique foetale. Les objectifs de cette étude étaient donc d’évaluer l’impact d’une exposition foetale à l’HGM sur le profil de méthylation de l’ADN et d’ARNm des gènes IGF1R {Insulin-like growth factor 1 receptor), IGFBP3 {Insulin-like growth factor binding protein 3), IGFI {Insulin-like growth factor 1) et INSR {Insulin receptor) dans le placenta, puis d’évaluer les possibles associations entre le profil épigénétique des gènes de ce système et les indices de développement foeto-placentaire. L’HGM (incluant l’intolérance au glucose et le DGM) a été diagnostiquée selon les critères de l'Organisation Mondiale de la Santé (OMS; HGM: n=34; normo-glycémie matemelle (NGM): n=106). Une hypométhylation de l’ADN des gènes IGF1R et IGFBP3 a été démontrée dans les placentas exposés à l’HGM comparé à ceux exposés à la NGM (respectivement -4,3%; p=0,02 et -2,5%; p= 0,01). Les niveaux de méthylation de l’ADN d’IGFIR et d'1GFBP3 étaient aussi corrélés négativement à la glycémie 2h post-HGOP (respectivement r=-0,23; p= 0,01 et r=-0,20; p= 0,03). Le poids du nouveau-né à la naissance était associé au niveau d’ARNm d’IGFIR dans le placenta (r=0,20; p=0,03). Ces résultats supportent la fonction régulatrice de croissance du système IGF au cours du développement foeto-placentaire et suggèrent une dérégulation du profil de méthylation de l’ADN des gènes IGF1R et d'IGFBP3 dans les placentas exposés à l'HGM. Cette étude suggère également un effet compensatoire du système IGF placentaire pouvant contribuer à limiter les effets promoteurs de croissance liés à l’hyperinsulinémie foetale associé à l’HGM. Les gènes IGF1R et IGFBP3 pourraient être impliqués dans la programmation foetale des maladies métaboliques chroniques.
26

Caractérisation de l'homologue de PABPN1 (Poly(A)-Binding Protein Nuclear 1) chez la levure à fission Schizosaccharomyces pombe

Lemieux, Caroline January 2012 (has links)
Deux classes de poly(A)-binding protein (PABP) lient la queue poly(A) des ARNm chez la plupart des mammifères: PABPC1 au cytosol et PABPN1 au noyau. PABPC1 stimule la traduction des ARNm tandis que PABPN1 stimule la processivité de la poly(A) polymérase tout en contrôlant la taille des queues poly(A). Il est à noter que les orthologues de PABPC1 sont bien caractérisés chez la levure, toutefois un homologue de PABPN1 n'avait jamais été identifié. Précédemment, le Dr. Bachand avait réalisé une purification par affinité avec la protéine d’arginine méthyltransférase I (Rmt1) couplée à la spectrométrie de masse, ce qui a permis d'identifier l’homologue de PABPN1 (Pab2) chez la levure à fission. Différentes expériences ont démontré que Pab2 est une protéine nucléaire non-essentielle qui lie spécifiquement des séquences poly(A) in vitro. Pab2 a été identifiée par son interaction avec Rmt1 et cette enzyme méthyle les arginines présentes dans le domaine riche en arginine de la protéine Pab2. Cette modification post-traductionnelle n'affecte pas la localisation nucléaire et l’affinité aux séquences poly(A) de Pab2. Par contre, les niveaux d’oligomérisation de Pab2 sont nettement augmentés lorsque Pab2 n’est plus méthylée. De plus, les ARNs provenant de cellules [Delta]pab2 sont hyperadénylés, ce qui corrobore avec la fonction de PABPN1 à contrôler la taille des queues poly(A) in vitro. Par la suite, j'ai caractérisé l’implication de Pab2 durant la maturation du pré-ARNm. Des essais d'immunoprécipitation de chromatine (ChIP) ont établi que Pab2 est recrutée co-transcriptionnellement aux gènes activement transcrits. De façon surprenante, mes études ont démontré que le recrutement de Pab2 précède celui d'un facteur impliqué dans le clivage et la polyadénylation. De plus, le recrutement de Pab2 dépend de l’ARNm naissant. Conséquemment, j'ai voulu identifier les protéines associées à Pab2. Ainsi, une purification d’affinité par tandem couplée à la spectrométrie de masse a révélé que Pab2 est associée à plusieurs protéines ribosomales ainsi que des facteurs de traduction générale. Ces données étaient étonnantes puisque la traduction des ARNm implique la protéine Pab1. Par conséquent, il était pertinent de vérifier le rôle possible de Pab2 sur la traduction. À priori, j ’ai confirmé que Pab2 fait la navette entre le noyau et le cytosol, ce qui concorde avec l’orthologue PABPN1. Par la suite, j'ai démontré qu’une fraction de la protéine Pab2 demeure associée aux ARNm activement traduits. Il devenait alors intéressant de connaître les cibles de Pab2. L’analyse génomique a établi que Pab2 régule l’expression de certains transcrits, tels que les gènes méïotiques, les snoRNAs et les rétrotransposons. Pour la suite de mes recherches, je me suis concentrée sur le gène codant pour la protéine ribosomale de la large sous-unité Rpl30-2, dont l’expression augmente de 4 fois en absence de Pab2. Il est intéressant de noter que le changement d ’expression de Rpl30-2 dans une souche [Delta]pab2 dépend de la présence de l’intron Rpl30-2. Mes travaux démontrent que l’expression de Rpl30-2 est régulée au niveau du pré-ARNm par Pab2 et Rrp6, une composante de l’exosome nucléaire. De plus, l’analyse du transcriptome par RNA-seq a établi que ce mécanisme permet de réguler l’expression d'une soixantaine de gènes qui sont inefficacement épissés. En ce qui concerne Rpl30-2, l’épissage de ce transcrit est ralenti par Rpl30-1, le paralogue de Rpl30-2. L’ensemble de mes travaux ont pu caractériser l’homologue de PABPN1 (Pab2) chez la levure à fission tout en établissant une fonction spécifique pour cette poly(A)-binding protein.
27

Étude de la régulation de l'expression de gènes cibles du récepteur aryl hydrocarbone dans des cellules cancéreuses de la glande mammaire

Marques, Maud January 2012 (has links)
Notre laboratoire s'intéresse aux mécanismes impliqués dans la régulation de l'expression génique et plus particulièrement au rôle de la chromatine dans cette régulation. En effet, chez les eucaryotes l'ADN est compactée autour de protéines appelées histones créant ainsi des nucléosomes lesquels forment une structure plus complexe, la chromatine. Cette dernière est une barrière aux processus cellulaires touchant l'ADN dont la transcription. La compréhension de la régulation de la structure de la chromatine est essentielle pour saisir les variations de l'expression génique. Mon projet de doctorat a porté sur l'étude de la régulation des gènes cibles du récepteur aryl hydrocarbone (AhR), CYP1A1 et CYP1B1, et plus particulièrement sur le rôle du variant d'histone H2A.Z dans l'expression de ces gènes. AhR est un senseur moléculaire auquel va [i.e. vont] se lier de nombreux polluants appartenant principalement à ces deux grandes familles : les hydrocarbones aromatiques halogènes (HAH) et les hydrocarbones aromatiques polycycliques (PAH). En réponse à la liaison de ces polluants, AhR va induire l'expression de ses gènes cibles. CYP1A1 et CYP1B1 sont impliquées dans le métabolisme de l'estradiol (E2) en 2hydroxyestradiol et 4-hydroxyestradiol respectivement. Il a été proposé qu'une diminution du ratio CYP1A1/CYP1B1 soit importante pour l'initiation du cancer du sein. Au cours de mon doctorat, j'ai pu mettre en évidence un rôle du variant H2A.Z dans la régulation de l'expression de CYP1A1 et CYP1B1. J'ai aussi pu montrer que le statut de ER[alpha] déterminait l'importance de H2A.Z lors de l'induction de CYP1A1. De plus, nous avons observé que la déplétion de H2A.Z induit une augmentation de la méthylation de l'ADN au promoteur de CYP1A1. En parallèle, nous avons confirmé que ER[alpha] réprime spécifiquement l'induction de CYP1A1 sans affecter celle de CYP1B1. Nos résultats montrent qu'en présence de TCDD et d'E2, ER[alpha] et DNMT3B sont recrutés au promoteur de CYP1A1, ce qui conduit à une augmentation de la méthylation du promoteur de CYP1A1 et conséquemment à une diminution de son induction. AhR possède de nombreux ligands d'origine très variée qui peuvent être aussi bien toxiques que bénéfiques. Nous avons choisi de comparer deux de ces ligands : le TCDD et le DIM. Au cours de ces travaux, nous avons montré que le DIM utilisé à forte concentration (>50[mu]M) induit les gènes cibles de AhR (CYP1A1 et CYP1B1) mais aussi un arrêt de la croissance et la mort des cellules. À l'opposé, le traitement avec des concentrations plus faible [i.e. faibles] de DIM (10[mu]M) induit principalement les gènes cibles de ER[alpha] (TFF1 et GREB1) et la prolifération des cellules. Nous avons aussi montré que l'activation de ER[alpha] par le DIM est due à l'action de la protéine kinase A (PKA). En effet, l'inhibition de la PKA ainsi que la déplétion de ER[alpha] abolissent les effets du DIM sur l'expression de GREB1 et CYPIA1 ainsi que sur la prolifération cellulaire. En conclusion, nous avons dans un premier temps mis en évidence le rôle de deux protéines, DNMT3B et H2A.Z, dans la régulation de CYP1A1 dans les cellules MCF7. Nous avons ainsi découvert un nouveau corépresseur partenaire de ER[alpha] en DNMT3B et nous avons proposé une nouvelle façon pour ER[alpha] de promouvoir la carcinogenèse en dérégulant le ratio CYP1A1/CYP1B1. Dans un deuxième temps, nous avons montré que la concentration de DIM utilisée dans les expériences peut conduire à des résultats diamétralement opposés sur la croissance cellulaire.
28

Contrôle épigénétique du risque de montaison chez une plante de grande culture : la betterave sucrière : mise au point d'une stratégie de caractérisation d'épiallèles associés à la sensibilité à la montaison en vue de l'élaboration d'un test de sélection

Trap, Marie-Veronique 27 January 2009 (has links) (PDF)
Chez les plantes, les processus de développement global et de plasticité développementale sont contrôlés par des mécanismes épigénétiques. La méthylation de l'ADN peut présenter un polymorphisme (épiallèles) qui est une source possible de biomarqueurs pour la sélection de génotypes d'intérêt agronomique. Pourtant, la recherche de tels biomarqueurs n'a pas encore été initiée. Dans ce contexte, nos objectifs ont concerné l'élaboration d'une stratégie pour la mise en évidence d'un contrôle épigénétique lors d'un processus développemental chez la betterave sucrière (Beta vulgaris altissima), ainsi que la recherche des biomarqueurs épigénétiques associés. Cette stratégie a d'abord été appliquée à la morphogenèse in vitro, sur trois lignées cellulaires de betterave sucrière. Une relation a pu être établie entre le niveau de méthylation de l'ADN et les propriétés morphogénétiques des lignées. Des biomarqueurs de morphogenèse in vitro ont ainsi été identifiés. La même stratégie a ensuite été appliquée in planta à la même espèce. L'existence d'un contrôle épigénétique lors de la vernalisation et de la dévernalisation chez plusieurs hybrides de betterave sucrière, avec des sensibilités à la montaison différentes, a été démontrée. Nous suggérons que l'amplitude et la cinétique des variations épigénétiques contrôlent l'induction de la montaison et sa rapidité, confirmant ainsi le rôle de la méthylation de l'ADN dans ce processus. Les loci cibles de ces remaniements de la méthylation de l'ADN lors de la vernalisation ont été définis. Un criblage a enfin permis d'identifier de potentiels biomarqueurs épigénétiques de la sensibilité à la montaison en vue de la mise au point d'un futur test de sélection agronomique.
29

Rôle de l'activité méthyltransférase de la protéine PRDM9 dans la recombinaison méiotique chez la souris / Role of PRDM9 methyltransferase activity in mouse meiotic recombination

Diagouraga, Boubou 15 December 2015 (has links)
Chez les organismes à reproduction sexuée, les gamètes (cellules sexuelles) sont produits par un processus comprenant deux divisions successives appelé méiose. Durant la première division, la recombinaison méiotique permet un contact physique et un échange de matériel génétique entre les chromosomes homologues. Elle résulte de la réparation, par recombinaison homologue, de cassures double-brin de l’ADN générées par la protéine SPO11 au début de la prophase de la première division. Chez les mammifères, les évènements de recombinaison se situent dans des régions de 1-2 kb appelées points chauds de recombinaison. La protéine PRDM9, qui contient un domaine PR/SET et des doigts de zinc, détermine la position des points chauds en ciblant des séquences spécifiques d’ADN par ses doigts de zinc. Son domaine PR/SET porte une activité lysine méthyltransférase, corrélée avec un enrichissement de H3K4me3 au niveau des points chauds, dans les spermatocytes.Les objectifs de mon travail étaient de caractériser l’activité catalytique de PRDM9 et d’étudier son rôle dans l’initiation de la recombinaison chez la souris. La structure cristallisée du domaine PR/SET de PRDM9 en complexe avec un peptide de l’histone H3 nous a permis de montrer que ce domaine adopte une structure similaire aux domaines SET canoniques portés par d’autres méthyltransférases, et d’identifier des résidus clés pour son activité. Nous montrons que le domaine PR/SET de PRDM9 méthyle in vitro non seulement H3K4, mais aussi H3K9 et H3K36. Nous confirmons in vivo la triméthylation de H3K36 dépendante de PRDM9 dans les spermatocytes. Utilisant deux allèles différents de PRDM9, Prdm9b et Prdm9wm7, qui activent des points chauds différents grâce à leur spécificité de séquence, nous avons généré des lignées de souris exprimant des allèles mutés du domaine PR/SET dont l’activité catalytique est abolie, Prdm9wm7G278A ou Prdm9wm7Y357F. La protéine mutante PRDM9wm7Y357F se fixe à ses cibles, mais n’y permet in vivo ni la triméthylation de H3K4, ni celle de H3K36. Enfin, nous montrons que l’activité catalytique de PRDM9 est requise pour promouvoir la recombinaison aux points chauds. Chez les souris exprimant uniquement un allèle Prdm9 muté, les spermatocytes présentent des défauts d’appariement des chromosomes homologues et de réparation des cassures double-brin de l’ADN, ainsi qu’un arrêt de la progression en méiose en milieu de prophase I, phénotype similaire à celui de la souris KO pour Prdm9 (Prdm9-/-). L’ensemble de nos résultats met en évidence le rôle primordial de l’activité méthyltransférase de PRDM9 pour la détermination des sites de recombinaison méiotique et plus généralement pour la progression de la méiose et finalement la formation de gamètes chez la souris. / In sexually reproducing organisms, gametes are produced by a process comprising two successive division, called meiosis. During the first division, meiotic recombination enables a physical contact and an exchange of genetic material between homologous chromosomes. Meiotic recombination results from the repair, by homologous recombination, of programmed DNA double-strand breaks (DSBs) catalyzed by the SPO11 protein at the beginning of prophase I. In mammals, recombination events are localized in 1 to 2 kb-long regions called recombination hotspots. PRDM9, a PR/SET domain and zinc finger-containing protein, determines hotspot localization by targeting specific DNA sequences through its zinc finger array. Notably, PRDM9 PR/SET-domain possesses an H3K4 methyltransferase activity, while PRDM9-dependent H3K4me3 enrichment is found at hotspots in spermatocytes.We aimed at characterizing PRDM9 methyltransferase activity and studying its role in meiotic recombination initiation in mouse. The crystal structure of PRDM9 PR/SET domain, which we generated in complex with a histone H3 peptide, shows that this domain adopts a similar topology to that of classical SET domains and allowed us to identify key residues for its catalytic activity. PRDM9 PR/SET domain catalyzes not only mono-, di- and trimethylation of H3K4, but also of H3K9 and H3K36. We confirmed PRDM9 dependent H3K36 trimethylation in spermatocytes. Taking advantage of the distinct DNA binding specificity of two Prdm9 alleles, Prdm9b and Prdm9wm7, each activating its own set of hotspots, we generated transgenic mouse lines expressing either Prdm9wm7G278A or Prdm9wm7Y357F mutant allele together with the endogenous wild-type Prdm9b allele. Both G278A and Y357F mutations abolish PRDM9 catalytic activity. We show that PRDM9wm7Y357F binds normally to its genomic targets, but is not able to promote H3K4 nor H3K36 trimethylation at these sites. In addition, PRDM9wm7Y357F does not promote recombination at one Prdm9wm7-dependent hotspot, showing that PRDM9 catalytic activity is required for promoting recombination at hotspots. In mice expressing only the mutant allele (Prdm9wm7G278A or Prdm9wm7Y357F), spermatocytes display defects in homologous chromosome synapsis and DSBs repair, as well as an arrest of meiosis at the mid-prophase I. This phenotype is similar to that of Prdm9 KO mice. Overall, our results demonstrate the role of PRDM9 methyltransferase activity in determining recombination hotspots and more generally for meiotic progression and gametes formation.
30

Transposon regulation upon dynamic loss of DNA methylation / Régulation des transposons lors de la perte rapide de la methylation de l'ADN

Walter, Marius 10 December 2015 (has links)
Les transposons sont des séquences d’ADN qui ont la capacité de se dupliquer de façon autonome, posant une menace pour l’intégrité et la stabilité du génome. De nombreux mécanismes existent pour contrôler l’expression des transposons, parmi lesquels la méthylation de l’ADN joue un rôle particulièrement important. Chez les mammifères, les profils de méthylation sont stables tout au long de la vie de l’individu, mis-à-part pendant deux moments clés du développement embryonnaire. Pendant ces deux périodes, la méthylation de l’ADN est globalement effacée, ce qui corrèle avec l’acquisition d’un état cellulaire pluripotent, puis rétablie. En utilisant un système cellulaire de reprogrammation de méthylation induite, ce travail s’est attaché à comprendre comment le génome parvient à maintenir le contrôle des transposons en l’absence de cette protection d’ordinaire essentielle, J’ai pu démontrer que divers mécanismes chromatiniens compensent progressivement la disparition de la méthylation de l’ADN pour le maintien de la répression des transposons. En particulier, la machinerie Polycomb prend en partie le relai et acquiert un rôle primordial, spécifiquement en l’absence de méthylation de l’ADN. Dans un second temps, la contribution du cofacteur d’ADN méthyltransférase DNMT3l lors de la méthylation de novo a été étudiée. Dans sa globalité, ces découvertes offrent des perspectives nouvelles sur la façon dont le génome se réorganise lors de moments clés du développement embryonnaire. / Transposons are DNA sequences that can duplicate autonomously in the genome, posing a threat for genome stability and integrity. To prevent their potentially harmful mobilization, eukaryotes have developed numerous mechanisms that control transposon expression, among which DNA methylation plays a particularly important role. In mammals, DNA methylation patterns are stable for life, at the exception of two key moments during embryonic development, gametogenesis and early embryogenesis. After a phase a global loss of genomic methylation accompanying the acquisition of pluripotent states, DNA methylation patterns are re- established de novo during differentiation. This work attempted to elucidate how the genome copes with the rapid loss of DNA methylation, in particular regarding the control of transposons in absence of this essential protective mark. Using an embryonic cellular model of induced methylation reprogramming, I showed that various chromatin-based mechanisms can compensate for the progressive loss of DNA methylation. In particular, my results suggest that the Polycomb machinery acquires a critical role in transposon silencing, providing a mechanistic relay specifically when DNA methylation patterns are erased. In a second phase, this work analyzed the contribution of the DNA methyltransferase cofactor DNMT3l during events of embryonic de novo methylation. Overall, these findings shed light onto the processes by which genome regulation adapts during DNA methylation reprogramming.

Page generated in 0.0932 seconds