• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • Tagged with
  • 6
  • 6
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Inferência via Bootstrap na Conjoint Analysis / Inference by Bootstrap in Conjoint Analysis

Barbosa, Eduardo Campana 14 December 2017 (has links)
Submitted by Reginaldo Soares de Freitas (reginaldo.freitas@ufv.br) on 2018-02-22T18:20:05Z No. of bitstreams: 1 texto completo.pdf: 826585 bytes, checksum: 3724f9d33c7d0253426d44dc0a59b8fc (MD5) / Made available in DSpace on 2018-02-22T18:20:05Z (GMT). No. of bitstreams: 1 texto completo.pdf: 826585 bytes, checksum: 3724f9d33c7d0253426d44dc0a59b8fc (MD5) Previous issue date: 2017-12-14 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / A presente tese teve como objetivo introduzir o método de reamostragem com reposição ou Bootstrap na Conjoint Analysis. Apresenta-se no texto uma revisão conceitual (Revisão de Literatura) sobre a referida metodologia (Conjoint Analysis) e também sobre o método proposto (Bootstrap). Adicionalmente, no Capítulo I e II, define-se a parte teórica e metodológica da Conjoint Analysis e do método Bootstrap, ilustrando o funcionamento conjunto dessas abordagens via aplicação real, com dados da área de tecnologia de alimentos. Inferências adicionais que até então não eram fornecidas no contexto clássico ou frequentista podem agora ser obtidas via análise das distribuições empíricas dos estimadores das Importâncias Relativas (abordagem por notas) e das Probabilidades e Razão de Escolhas (abordagem por escolhas). De forma geral, os resultados demonstraram que o método Bootstrap forneceu estimativas pontuais mais precisas e tornou ambas as abordagens da Conjoint Analysis mais informativas, uma vez que medidas de erro padrão e, principalmente, intervalos de confiança puderam ser facilmente obtidos para certas quantidades de interesse, possibilitando a realização de testes ou comparações estatísticas sobre as mesmas. / The aim of this thesis was introduce the Booststrap resampling method in Conjoint Analysis. We present in the text a conceptual review (Literature Review) about this methodology (Conjoint Analysis) and also about the proposed method (Bootstrap). In addition, in Chapter I and II, the theoretical and methodological aspects of Conjoint Analysis and the Bootstrap method are defined, illustrating the joint operation of these approaches via real application, with data from the food technology area.. Additional inferences have not been provided in the classic or frequentist context can now be obtained by analyzing the empirical distributions of Relative Importance (ratings based approach) and Probability and Choice Ratio (choice based approach) estimators. Overall, the results demonstrated that the Bootstrap method provided more accurate point estimates and made both Conjoint Analysis approaches more informative, since standard error measures, and mainly confidence intervals, could be easily obtained for certain quantities of interest, making it possible to perform statistical tests or comparisons on them.
2

Imputação AMMI Bootstrap Não-paramétrico em dados multiambientais / AMMI imputation Non-parametric bootstrap in multenvironmental data

Silva, Maria Joseane Cruz da 20 January 2017 (has links)
Em estudos multiambientais, o processo de recomendação de genótipos com maior produção e a determinação de genótipos estáveis são de suma importância para os melhoristas. Porém, quando ocorre falta de genótipo em um ou mais ambientes este processo passa a ter dificuldades. Pois, este procedimento depende de métodos estatísticos que necessitam de uma matriz de dados sem dados em falta. Desde 1976 diversos matemáticos e estatísticos estudam, continuamente, uma forma de lidar com dados em falta em dados multiambientais buscando obter um método que estime, de forma precisa, as unidades ausentes sem perda de informação. Desta forma, esta pesquisa propõe um novo método de imputação baseado na metodologia AMMI fazendo reamostragens Bootstrap Não-paramétrico na matriz de médias de interação genótipos e ambientes (G × E), o modelo de imputação AMMI Bootstrap Não-paramétrico (IAMMI-BNP). Para estudo de simulação foi considerado o conjunto de dados referente a procedência S. of Ravenshoe - Mt Pandanus - QLD (14.420) de Eucalyptus grandis coletada na Austrália em 1983. Com a finalidade de obter estimativas precisas dos valores em falta, foi considerado dois estudos de simulação. O primeiro considerou 2000 reamostragens no sentido linha da matriz de interação G × E considerando duas porcentagens de perda de dados (10% e 20 %). O segundo estudo de simulação, considerou 200 reamostragens na matriz de falta (10%) e três diferentes modelos de IAMMI-BNP: IAMMI0-BNP, que considera apenas os efeitos principais do modelo AMMI; IAMMI1-BNP e IAMMI2-BNP que considera um e dois eixos multiplicados do modelo AMMI, respectivamente. De forma geral, de acordo com os métodos de comparação o método de imputação proposto nos dois estudos de simulação forneceu valores imputados próximos dos originais. Considerando os estudos de simulação com 10% de perda, a eficiência do método de imputação proposto foi melhor quando se utilizou o modelo IAMMI2-BNP (com dois eixos multiplicativos). O teste das ordens assinaladas de Wilcoxon mostrou que os valores imputados não influenciaram na estimativa da média, indicando que valores médios dos dados imputados de cada ambiente foram estatisticamente semelhantes aos valores médios originais. / In multienvironment studies, the process of recommendation of genotypes with higher production and the determination of stable environments are of utmost importance for plant breeders. However, when there is missing of genotype in one or more environments this process show difficulties. Therefore, this procedure depends on statistical methods that complete data matrix requered. Since 1976 various mathematical and statistical study, continually, one way of dealing with the loss of information on data multienvironments, seeking to obtain a method that estimate, precisely, the missing units without loss of information. In this way, the purpose of this study is develop a new method of apportionment based on the methodology AMMI doing reamostragens bootstrap nonparametric in the array of means of genotype x environment interaction (GE). For the study of simulation was considered the data set concerning the origin of S. Mexico City - Mt Pandanus - QLD (14,420) of Eucalyptus grandis collected in Australia in 1983. It was performed two studies of simulation. The first performed 2000 resampling on the lines of the interaction matrix G X E, for two percentages of missing data (10% and 20%). The second simulation study considered 200 replicates in the missing data set (10 %) and three different models of IMAMMI-BNP: AMAMMI0-BNP, which considers only the main effects of the AMMI model; IAMMI1-BNP and IAMMI2-BNP which considers one and two axes multiplied by the AMMI model, respectively. In general, according to the comparison methods, the imputation method proposed in the two simulation studies provided imputed values similar to the originals. Considering the simulation studies with 10 % loss, the efficiency of the proposed imputation method was better when using the IAMMI2-BNP model (with two multiplicative axes). The Wilcoxon test of the orders showed that the values imputed had no influence on the mean estimate, indicating that mean values of the data imputed from each environment were statistically similar to the original mean values.
3

Imputação AMMI Bootstrap Não-paramétrico em dados multiambientais / AMMI imputation Non-parametric bootstrap in multenvironmental data

Maria Joseane Cruz da Silva 20 January 2017 (has links)
Em estudos multiambientais, o processo de recomendação de genótipos com maior produção e a determinação de genótipos estáveis são de suma importância para os melhoristas. Porém, quando ocorre falta de genótipo em um ou mais ambientes este processo passa a ter dificuldades. Pois, este procedimento depende de métodos estatísticos que necessitam de uma matriz de dados sem dados em falta. Desde 1976 diversos matemáticos e estatísticos estudam, continuamente, uma forma de lidar com dados em falta em dados multiambientais buscando obter um método que estime, de forma precisa, as unidades ausentes sem perda de informação. Desta forma, esta pesquisa propõe um novo método de imputação baseado na metodologia AMMI fazendo reamostragens Bootstrap Não-paramétrico na matriz de médias de interação genótipos e ambientes (G × E), o modelo de imputação AMMI Bootstrap Não-paramétrico (IAMMI-BNP). Para estudo de simulação foi considerado o conjunto de dados referente a procedência S. of Ravenshoe - Mt Pandanus - QLD (14.420) de Eucalyptus grandis coletada na Austrália em 1983. Com a finalidade de obter estimativas precisas dos valores em falta, foi considerado dois estudos de simulação. O primeiro considerou 2000 reamostragens no sentido linha da matriz de interação G × E considerando duas porcentagens de perda de dados (10% e 20 %). O segundo estudo de simulação, considerou 200 reamostragens na matriz de falta (10%) e três diferentes modelos de IAMMI-BNP: IAMMI0-BNP, que considera apenas os efeitos principais do modelo AMMI; IAMMI1-BNP e IAMMI2-BNP que considera um e dois eixos multiplicados do modelo AMMI, respectivamente. De forma geral, de acordo com os métodos de comparação o método de imputação proposto nos dois estudos de simulação forneceu valores imputados próximos dos originais. Considerando os estudos de simulação com 10% de perda, a eficiência do método de imputação proposto foi melhor quando se utilizou o modelo IAMMI2-BNP (com dois eixos multiplicativos). O teste das ordens assinaladas de Wilcoxon mostrou que os valores imputados não influenciaram na estimativa da média, indicando que valores médios dos dados imputados de cada ambiente foram estatisticamente semelhantes aos valores médios originais. / In multienvironment studies, the process of recommendation of genotypes with higher production and the determination of stable environments are of utmost importance for plant breeders. However, when there is missing of genotype in one or more environments this process show difficulties. Therefore, this procedure depends on statistical methods that complete data matrix requered. Since 1976 various mathematical and statistical study, continually, one way of dealing with the loss of information on data multienvironments, seeking to obtain a method that estimate, precisely, the missing units without loss of information. In this way, the purpose of this study is develop a new method of apportionment based on the methodology AMMI doing reamostragens bootstrap nonparametric in the array of means of genotype x environment interaction (GE). For the study of simulation was considered the data set concerning the origin of S. Mexico City - Mt Pandanus - QLD (14,420) of Eucalyptus grandis collected in Australia in 1983. It was performed two studies of simulation. The first performed 2000 resampling on the lines of the interaction matrix G X E, for two percentages of missing data (10% and 20%). The second simulation study considered 200 replicates in the missing data set (10 %) and three different models of IMAMMI-BNP: AMAMMI0-BNP, which considers only the main effects of the AMMI model; IAMMI1-BNP and IAMMI2-BNP which considers one and two axes multiplied by the AMMI model, respectively. In general, according to the comparison methods, the imputation method proposed in the two simulation studies provided imputed values similar to the originals. Considering the simulation studies with 10 % loss, the efficiency of the proposed imputation method was better when using the IAMMI2-BNP model (with two multiplicative axes). The Wilcoxon test of the orders showed that the values imputed had no influence on the mean estimate, indicating that mean values of the data imputed from each environment were statistically similar to the original mean values.
4

Função de intensidade Poisson perturbada pelo número de ocorrências para dados de eventos recorrentes

Caetano, Sabrina Luzia 22 June 2007 (has links)
Made available in DSpace on 2016-06-02T20:06:00Z (GMT). No. of bitstreams: 1 1733.pdf: 506732 bytes, checksum: 69dc517ba311518fd0cae4b4942be8df (MD5) Previous issue date: 2007-06-22 / Financiadora de Estudos e Projetos / Uma particularidade da análise de sobrevivência e confiabilidade se refere ao fato de que existem situações em que um evento de interesse pode ocorrer várias vezes para uma unidade amostral. Nesta dissertação estudamos o modelo de intensidade Poisson Perturbada para dados de eventos recorrentes. Primeiramente uma revisão da literatura sobre os processos de Poisson e Renovação é realizada. Um modelo de intensidade Poisson Perturbada para dados de eventos recorrentes é apresentado, sendo que a estimação dos parâmetros de interesse é realizada para sistemas reparáveis simples, retratando apenas uma unidade, podendo ser esta caracterizada por um indivíduo ou componente. Os exemplos considerados neste estudo, referem-se a dados artificiais e também a um exemplo real, tal que o evento de interesse é o tempo de reincidência da variável considerada, podendo ser esta variável o tempo até a falha de um componente, tempo até uma nova crise de uma determinada doença ou até mesmo tempo de compras de um determinado produto. As estimativas dos parâmetros do modelo são obtidas via máxima verossimilhança. Procedimentos de estimação intervalar são apresentados, bem como testes baseados nas estatísticas de Wald e da razão de verossimilhança são realizados para os parâmetros de interesse.
5

Uma modificação da extensão do algoritmo AID para modelos lineares generalizados usando reamostragem Bootstrap

Presotti, Cátia Valéria 03 March 2006 (has links)
Made available in DSpace on 2016-06-02T20:06:11Z (GMT). No. of bitstreams: 1 DissCVP.pdf: 769628 bytes, checksum: 82a04371dc9ee3d93afa897684220b87 (MD5) Previous issue date: 2006-03-03 / Financiadora de Estudos e Projetos / One of the most frequently situation found by researchers is to find groups of similar individuals. The cluster analysis is a set of statistical techniques that identify mutually exclusive subgroups or classes over individuals, based on their similarity. When then main is to group means of treatments we can use contrasts, multiple comparitions or clustering techniques as the SCOTT-KNOTT test and AID (Automatic Interaction Detector) technique. In this work we focus on the comparition of the simulated power function of the asymptotic test and also of the bootstrap test for the extension of the AID algorithm for generalized linear models. The bootstrap power function over main the asymptotic power when the number of binomial sample is equal to one, and the number of treatments is equal to 8 and 12, in a completed randomized experiment with a single factor for binomial variables. / Uma das situações mais freqüentes encontradas por pesquisadores de diversas áreas do conhecimento é formar grupos de indivíduos que sejam, de alguma maneira, similares entre si. A análise de agrupamento é um conjunto de técnicas estatísticas que identificam subgrupos ou classes distintas de indivíduos mutuamente excludentes com base nas similaridades existentes entre os indivíduos, ou seja, os mais semelhantes pertencem ao mesmo grupo. No caso específico de uma única variável resposta e diversas explicativas, vários procedimentos podem ser utilizados, entre eles: contrastes de médias, comparações múltiplas ou técnicas aglomerativas, como teste de SCOTTKNOTT e a técnica AID - (Automatic Interaction Detector). As técnicas de agrupamento de médias podem não ser adequadas na aplicação em dados com distribuição diferente da normal. Nesse caso, utilizou-se a extensão do algoritmo AID, no qual se baseia o método de SCOTT-KNOTT. Essa extensão é usada em modelos lineares generalizados e adota, como medida de homogeneidade de grupos, uma estatística baseada na função desvio que tem assintoticamente distribuição quiquadrado. Neste trabalho, apresentam-se o método de reamostragem bootstrap adaptado para a extensão do algoritmo AID, sua curva poder simulada e a curva poder simulada assintótica, considerando um delineamento inteiramente ao acaso, com tamanho da amostra binomial nb, com r tratamentos e nr repetições por tratamento. Os resultados do estudo por simulação indicam que, conforme aumenta-se o tamanho da amostra binomial, o poder simulado dos dois testes aumenta rapidamente. Por outro lado, esse comportamento é mais acentuado conforme aumenta-se o número de tratamentos. Vale ressaltar que, para o caso extremo em que o tamanho da binomial é igual a 1 e o número de tratamentos igual a 8 e 12, a curva poder simulada do teste bootstrap é destacadamente superior à curva poder do teste assintótico para o número de repetições por tratamento estudado.
6

Comparação entre métodos de imputação de dados em diferentes intensidades amostrais na série homogênea de precipitação pluvial da ESALQ / Comparison between data imputation methods at different sample intensities in the ESALQ homogeneous rainfall series

Gasparetto, Suelen Cristina 07 June 2019 (has links)
Problemas frequentes nas análises estatísticas de informações meteorológicas são a ocorrência de dados faltantes e ausência de conhecimento acerca da homogeneidade das informações contidas no banco de dados. O objetivo deste trabalho foi testar e classificar a homogeneidade da série de precipitação pluvial da estação climatológica convencional da ESALQ, no período de 1917 a 1997, e comparar três métodos de imputação de dados, em diferentes intensidades amostrais (5%, 10% e 15%) de informações faltantes, geradas de forma aleatória. Foram utilizados três testes de homogeneidade da série: Pettitt, Buishand e normal padrão. Para o \"preenchimento\" das informações faltantes, foram comparados três métodos de imputação múltipla: PMM (Predictive Mean Matching), random forest e regressão linear via método bootstrap, em cada intensidade amostral de informações faltantes. Os métodos foram utilizados por meio do pacote MICE (Multivariate Imputation by Chained Equations) do R. A comparação entre cada procedimento de imputação foi feita por meio da raiz do erro quadrático médio, índice de exatidão de Willmott e o índice de desempenho. A série de chuva foi entendida como de classe 1, ou seja, \"útil\" - Nenhum sinal claro de falta de homogeneidade foi aparente e, o método que resultou em menores valores da raiz quadrada dos erros e maiores índices foi o PMM, em especial na intensidade de 10% de informações faltantes. O índice de desempenho para os três métodos de imputação de dados em todas as intensidades de observações faltantes foi considerado \"Péssimo\" / Frequent problems in the statistical analyzes of meteorological information are the occurrence of missing data and missing of knowledge about the homogeneity of the information contained in the data base. The objective of this work was to test and classify the homogeneity of the rainfall series of the conventional climatological station of the ESALQ from 1917 to 1997 and to compare three methods of data imputation in different sample intensities (5%, 10% and 15%), of missing data, generated in a random way. Three homogeneity tests were used: Pettitt, Buishand and standard normal. For the \"filling\" of missing information, three methods of multiple imputation were compared: PMM (Predictive Mean Matching), random forest and linear regression via bootstrap method, in each sampling intensity of missing information. The methods were used by means of the MICE (Multivariate Imputation by Chained Equations) package of R. The comparison of each imputation procedure was done by root mean square error, Willmott\'s accuracy index and performance index. The rainfall series was understood to be class 1 \"useful\" - No clear sign of lack of homogeneity was apparent and the method that resulted in smaller values of the square root of the errors and higher indexes was the PMM, in particular the intensity of 10% of missing information. The performance index for the three methods of imputation the data at all missing observation intensities was considered \"Terrible\"

Page generated in 0.0797 seconds