• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 43
  • 24
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 83
  • 83
  • 20
  • 17
  • 17
  • 17
  • 16
  • 11
  • 11
  • 10
  • 9
  • 8
  • 8
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Implication de la voie ERK3/4-MK5 dans la phase G2/M du cycle cellulaire

Tanguay, Pierre-Luc 12 1900 (has links)
La division cellulaire est influencée par les différents stimuli provenant de l’extérieur ou de l’intérieur de la cellule. Plusieurs réseaux enzymatiques élaborés au cours de l’évolution relayent l’information générée par ces signaux. Les modules MAP kinases sont extrêmement importants au sein de la cellule. Chez l’humain, 14 MAP kinases sont regroupées en sept voies distinctes intervenant dans le contrôle d’une myriade de processus cellulaires. ERK3/4 sont des homologues de ERK1/2 pour lesquelles on ne connaît que très peu de choses concernant leurs fonctions et régulation. Ces MAP kinases sont dites atypiques puisqu’elles ont des particularités structurales et des modes de régulation qui diffèrent des autres MAP kinases classiques. Ainsi, notre laboratoire a démontré que l’activité de ERK3 est régulée par le système ubiquitine-protéasome et qu’elle pourrait avoir un rôle à jouer dans le contrôle de la différenciation et la prolifération cellulaire. La première étude présentée décrit la régulation de ERK3 au cours du cycle cellulaire. Nous avons observé que ERK3 est hyperphosphorylée et s’accumule spécifiquement au cours de la mitose. Des analyses de spectrométrie de masse ont mené à l’identification de quatre sites de phosphorylation situés à l’extrémité du domaine C-terminal. Nous avons pu démontrer que la kinase mitotique CDK1/cycline B phosphoryle ces sites et que les phosphatases CDC14A et CDC14B les déphosphorylent. Finalement, nous démontrons que la phosphorylation mitotique de ERK3 a pour effet de la stabiliser. Au début de mes études doctorales, la kinase MK5 fut identifiée comme premier partenaire et substrat de ERK3. MK5 a très peu de fonctions connues. Des données dans la littérature suggèrent qu’elle peut moduler le cycle cellulaire dans certaines conditions. Par exemple, MK5 a récemment été identifié comme inducteur de la sénescence induite par l’oncogène Ras. Dans la deuxième étude, nous décrivons une nouvelle fonction de MK5 dans le contrôle du cycle cellulaire. Nous démontrons par des expériences de gain et perte de fonction que MK5 ralentit l’entrée en mitose suite à un arrêt de la réplication. Cette fonction est dépendante de l’activité enzymatique de MK5 qui régule indirectement l’activité de CDK1/cycline B. Finalement, nous avons identifié Cdc25A comme un nouveau substrat in vitro de MK5 dont la surexpression supprime l’effet de MK5 sur l’entrée en mitose. En conclusion, nos résultats décrivent un nouveau mécanisme de régulation de ERK3 au cours de la mitose, ainsi qu’une nouvelle fonction pour MK5 dans le contrôle de l’entrée en mitose en réponse à des stress de la réplication. Ces résultats démontrent pour la première fois l’implication de ces protéines au cours de la transition G2/M. Nos travaux établissent de nouvelles pistes d’études pour mieux comprendre les rôles encore peu définis des kinases ERK3/4-MK5. / The process of cell division is largely influenced by extracellular and intracellular cues. Many enzymatic pathways refined during evolution propagate the information generated by those cues. MAP kinase modules are extremely important within the cells. Human genome encodes 14 MAP kinases genes grouped into seven distinct pathways involved in the control of many cellular processes. ERK3/4 are kinases homologous to ERK1/2. Very little is known about their regulation and molecular functions. These MAP kinases are described as being atypical based on their unique structural characteristics and mode of regulation. Our laboratory was the first to demonstrate that the activity of ERK3 is mainly regulated by the ubiquitin-proteasome system in proliferating cells. In addition, several lines of evidence suggest a role for ERK3 in the control of cell differentiation and proliferation. The first study presented herein documents the regulation of ERK3 during the cell cycle. We observed that ERK3 is hyperphosphorylated and accumulated specifically during mitosis. Mass spectrometry analyses led to the identification of four phosphorylation sites located in the C-terminal domain. We demonstrate that mitotic kinase CDK1/cyclin B phosphorylates these sites which are dephosphorylated by Cdc14A and Cdc14B phosphatases. Finally, we show that mitotic phosphorylation of ERK3 controls its stability. At the beginning of my Ph.D. training, the kinase MK5 was the first identified binding partner and substrate of ERK3. MK5 is implicated in very few cellular functions. Data suggest that under certain conditions it modulates cell cycle progression. For example, MK5 was recently identified as a tumor suppressor gene essential for ras-induced senescence. In the second study of this thesis, we describe a novel function of MK5 in cell cycle progression. Gain and loss of function experiments demonstrate that MK5 delays G2/M transition following replicative stress. This function depends on its catalytic activity to indirectly regulates CDK1/cyclin B. Finally, we identified Cdc25A as a good in vitro substrate for MK5. Interestingly, Cdc25A expression inhibits MK5-induced delay of entry into mitosis. In conclusion, our results described a novel mechanism of regulation of ERK3 during mitosis and a novel function of MK5 in the control of G2/M transition after replicative stress. These data demonstrate for the first time the relation between these kinases and the G2/M transition. Our work should contribute to a better understanding of the roles of ERK3/4-MK5 kinases.
52

Implication de la voie ERK3/4-MK5 dans la phase G2/M du cycle cellulaire

Tanguay, Pierre-Luc 12 1900 (has links)
La division cellulaire est influencée par les différents stimuli provenant de l’extérieur ou de l’intérieur de la cellule. Plusieurs réseaux enzymatiques élaborés au cours de l’évolution relayent l’information générée par ces signaux. Les modules MAP kinases sont extrêmement importants au sein de la cellule. Chez l’humain, 14 MAP kinases sont regroupées en sept voies distinctes intervenant dans le contrôle d’une myriade de processus cellulaires. ERK3/4 sont des homologues de ERK1/2 pour lesquelles on ne connaît que très peu de choses concernant leurs fonctions et régulation. Ces MAP kinases sont dites atypiques puisqu’elles ont des particularités structurales et des modes de régulation qui diffèrent des autres MAP kinases classiques. Ainsi, notre laboratoire a démontré que l’activité de ERK3 est régulée par le système ubiquitine-protéasome et qu’elle pourrait avoir un rôle à jouer dans le contrôle de la différenciation et la prolifération cellulaire. La première étude présentée décrit la régulation de ERK3 au cours du cycle cellulaire. Nous avons observé que ERK3 est hyperphosphorylée et s’accumule spécifiquement au cours de la mitose. Des analyses de spectrométrie de masse ont mené à l’identification de quatre sites de phosphorylation situés à l’extrémité du domaine C-terminal. Nous avons pu démontrer que la kinase mitotique CDK1/cycline B phosphoryle ces sites et que les phosphatases CDC14A et CDC14B les déphosphorylent. Finalement, nous démontrons que la phosphorylation mitotique de ERK3 a pour effet de la stabiliser. Au début de mes études doctorales, la kinase MK5 fut identifiée comme premier partenaire et substrat de ERK3. MK5 a très peu de fonctions connues. Des données dans la littérature suggèrent qu’elle peut moduler le cycle cellulaire dans certaines conditions. Par exemple, MK5 a récemment été identifié comme inducteur de la sénescence induite par l’oncogène Ras. Dans la deuxième étude, nous décrivons une nouvelle fonction de MK5 dans le contrôle du cycle cellulaire. Nous démontrons par des expériences de gain et perte de fonction que MK5 ralentit l’entrée en mitose suite à un arrêt de la réplication. Cette fonction est dépendante de l’activité enzymatique de MK5 qui régule indirectement l’activité de CDK1/cycline B. Finalement, nous avons identifié Cdc25A comme un nouveau substrat in vitro de MK5 dont la surexpression supprime l’effet de MK5 sur l’entrée en mitose. En conclusion, nos résultats décrivent un nouveau mécanisme de régulation de ERK3 au cours de la mitose, ainsi qu’une nouvelle fonction pour MK5 dans le contrôle de l’entrée en mitose en réponse à des stress de la réplication. Ces résultats démontrent pour la première fois l’implication de ces protéines au cours de la transition G2/M. Nos travaux établissent de nouvelles pistes d’études pour mieux comprendre les rôles encore peu définis des kinases ERK3/4-MK5. / The process of cell division is largely influenced by extracellular and intracellular cues. Many enzymatic pathways refined during evolution propagate the information generated by those cues. MAP kinase modules are extremely important within the cells. Human genome encodes 14 MAP kinases genes grouped into seven distinct pathways involved in the control of many cellular processes. ERK3/4 are kinases homologous to ERK1/2. Very little is known about their regulation and molecular functions. These MAP kinases are described as being atypical based on their unique structural characteristics and mode of regulation. Our laboratory was the first to demonstrate that the activity of ERK3 is mainly regulated by the ubiquitin-proteasome system in proliferating cells. In addition, several lines of evidence suggest a role for ERK3 in the control of cell differentiation and proliferation. The first study presented herein documents the regulation of ERK3 during the cell cycle. We observed that ERK3 is hyperphosphorylated and accumulated specifically during mitosis. Mass spectrometry analyses led to the identification of four phosphorylation sites located in the C-terminal domain. We demonstrate that mitotic kinase CDK1/cyclin B phosphorylates these sites which are dephosphorylated by Cdc14A and Cdc14B phosphatases. Finally, we show that mitotic phosphorylation of ERK3 controls its stability. At the beginning of my Ph.D. training, the kinase MK5 was the first identified binding partner and substrate of ERK3. MK5 is implicated in very few cellular functions. Data suggest that under certain conditions it modulates cell cycle progression. For example, MK5 was recently identified as a tumor suppressor gene essential for ras-induced senescence. In the second study of this thesis, we describe a novel function of MK5 in cell cycle progression. Gain and loss of function experiments demonstrate that MK5 delays G2/M transition following replicative stress. This function depends on its catalytic activity to indirectly regulates CDK1/cyclin B. Finally, we identified Cdc25A as a good in vitro substrate for MK5. Interestingly, Cdc25A expression inhibits MK5-induced delay of entry into mitosis. In conclusion, our results described a novel mechanism of regulation of ERK3 during mitosis and a novel function of MK5 in the control of G2/M transition after replicative stress. These data demonstrate for the first time the relation between these kinases and the G2/M transition. Our work should contribute to a better understanding of the roles of ERK3/4-MK5 kinases.
53

Growth factor-mediated telomerase activity in ovarian cancer cells

Bermudez, Yira. January 2007 (has links)
Dissertation (Ph.D.)--University of South Florida, 2007. / Title from PDF of title page. Document formatted into pages; contains 154 pages. Includes vita. Includes bibliographical references.
54

Apoptotic signaling pathways in mammalian growth plate chondrocytes

Zhong, Ming 09 February 2010 (has links)
The growth plate resting zone consists of hyaline-like chondrocytes disbursed in a proteoglycan rich extracellular matrix. These cells give rise to the columns of the growth zone, consisting of progressively hypertrophic cells. Proliferation of resting zone chondrocytes induced by systemic and local stimuli is the driving force of longitudinal growth of long bones. Therefore, homeostasis of this cell population has great importance. Although the regulation of proliferation and differentiation of these cells has been well studied, little is known about the regulation of their apoptosis. We have previously shown that chelerythrine and tamoxifen induce apoptosis in resting zone chondrocytes in a nitric oxide (NO)-dependent pathway. In this study we explored two physiological apoptogens: inorganic phosphate (Pi) and 17β-estradiol (E₂). We found NO production is necessary in Pi-induced apoptosis. We also found that NO donors induced chondrocyte apoptosis by up-regulating p53 expression, Bax/Bcl-2 expression ratio and cytochrome C release from mitochondria, as well as caspase-3 activity, indicating that NO induces chondrocyte apoptosis in a mitochondrial pathway. Mitogen activated protein kinase (MAPK) activity was involved. A c-Jun N-terminal kinase (JNK) inhibitor, but not inhibitors of p38 or extracellular signal-regulated kinase (ERK1/2), was able to block NO-induced apoptosis, indicating that JNK is necessary in this pathway. Taken together, Pi elevates NO production, which leads to a mitochondrial apoptotic pathway dependent on JNK. On the other hand, although E₂caused apoptosis in resting zone chondrocytes in a dose-dependent manner, up-regulated p53 and Bax, and induced release of cytochrome C from the mitochondria, which indicated a mitochondrial apoptotic pathway, the apoptosis did not involve elevated nitric oxide production or MAPK as was found in Pi-induced apoptosis. This study elucidates the signaling pathway underlying Pi and E₂-induced chondrocyte apoptosis. It has important implications on understanding the development of mammalian growth plate. It also provides further information about the physiological functions of estrogen on longitudinal bone growth.
55

Le syndrome Cardio-Facio-Cutané et les syndromes apparentés l'implication des gènes de la voie RAS-MAPK /

Nava, Caroline. Cavé, Hélène. January 2009 (has links) (PDF)
Reproduction de : Thèse d'exercice : Médecine. Génétique médicale : Paris 12 : 2008. / Titre provenant de l'écran-titre. Bibliogr. f. 70-76.
56

Rôle de l'homéostasie protonique lors de la transition G2/M de l'ovocyte de Xénope

Sellier, Chantal Vilain, Jean-Pierre. January 2009 (has links)
Reproduction de : Thèse de doctorat : Sciences de la vie et de la santé : Lille 1 : 2006. / N° d'ordre (Lille 1) : 3910. Articles en anglais reproduits dans le texte et en annexe. Résumés en français et en anglais. Titre provenant de la page de titre du document numérisé. Bibliogr. p. 242-290.
57

Regulation and function of BDNF-activated ERK5 and ERK1/2 MAP kinases in CNS neurons /

Wang, Yupeng. January 2007 (has links)
Thesis (Ph. D.)--University of Washington, 2007. / Vita. Includes bibliographical references (leaves 95-113).
58

Growth factor-mediated telomerase activity in ovarian cancer cells /

Bermudez, Yira. January 2007 (has links)
Dissertation (Ph.D.)--University of South Florida, 2007. / Includes vita. Includes bibliographical references (leaves 123-154). Also available online.
59

MAPK pathway as a target for therapy in melanoma

Krayem, Mohammad 29 May 2015 (has links)
\ / Doctorat en Sciences biomédicales et pharmaceutiques / info:eu-repo/semantics/nonPublished
60

Vliv acyklických nukleosidfosfonátů PMEG a PMEDAP na p38 kinasovou signalizaci v lidských leukemických buňkách / The influence of acyclic nucleotide phosphonates PMEG and PMEDAP on p38 kinase signaling in human leukemic cells

Nejedlá, Michaela January 2010 (has links)
PMEG [9-(2-phosphonomethoxyethyl)guanine] and PMEDAP [9-phosphonomethoxy- ethyl)-2,6-diaminopurine] are acyclic nucleoside phosphonates possessing cytotoxic properties. Antiproliferative effect of PMEG was demonstrated in various tumor cell lines in vitro. PMEG also represents an active component of some experimental prodrugs with enhanced selectivity and efficacy (such as GS-9219). PMEDAP seems to have weaker effect in vitro compared to PMEG, however it exhibited pronounced antitumor effect in SD-rats with spontaneous lymphoma. Therefore it was included in the present study as well. The aim of this study was to describe the interactions of PMEG and PMEDAP with p38 MAP kinase signaling and its relationship to the apoptosis. We investigated the influence of these compounds on the expression of four genes encoding p38 MAPK isoforms and whether this change is translated into the protein. It was found that PMEG up-regulates p38β and γ mRNA in CCRF-CEM cells and p38 β and δ in HL-60 cells. The effect of PMEDAP was less pronounced than that of PMEG. However, total p38 protein level remained unaffected by PMEG and PMEDAP. Activation of p38 MAPK cascade was also measured in the cells exposed to these agents using phospho-specific antibodies. We found that neither PMEG nor PMEDAP activated p38 kinase...

Page generated in 0.0289 seconds