• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 156
  • 33
  • 26
  • 11
  • 5
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 256
  • 256
  • 108
  • 58
  • 57
  • 56
  • 45
  • 29
  • 28
  • 28
  • 27
  • 24
  • 22
  • 21
  • 21
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Statistical Mechanics of Polar, Biaxial and Chiral Order in Liquid Crystals

Dhakal, Subas 30 June 2010 (has links)
No description available.
112

Analysis of Sleep-Wake Transition Dynamics by Stochastic Mean Field Model and Metastable State

Kim, Jung Eun 03 November 2014 (has links)
No description available.
113

Decentralized Integration of Distributed Energy Resources into Energy Markets with Physical Constraints

Chen Feng (18556528) 29 May 2024 (has links)
<p dir="ltr">With the growing installation of distributed energy resources (DERs) at homes, more residential households are able to reduce the overall energy cost by storing unused energy in the storage battery when there is abundant renewable energy generation, and using the stored energy when there is insufficient renewable energy generation and high demand. It could be even more economical for the household if energy can be traded and shared among neighboring households. Despite the great economic benefit of DERs, they could also make it more challenging to ensure the stability of the grid due to the decentralization of agents' activities.</p><p><br></p><p dir="ltr">This thesis presents two approaches that combine market and control mechanisms to address these challenges. In the first work, we focus on the integration of DERs into local energy markets. We introduce a peer-to-peer (P2P) local energy market and propose a consensus multi-agent reinforcement learning (MARL) framework, which allows agents to develop strategies for trading and decentralized voltage control within the P2P market. It is compared to both the fully decentralized and centralized training & decentralized execution (CTDE) framework. Numerical results reveal that under each framework, the system is able to converge to a dynamic balance with the guarantee of system stability as each agent gradually learns the approximately optimal strategy. Theoretical results also prove the convergence of the consensus MARL algorithm under certain conditions.</p><p dir="ltr">In the second work, we introduce a mean-field game framework for the integration of DERs into wholesale energy markets. This framework helps DER owners automatically learn optimal decision policies in response to market price fluctuations and their own variable renewable energy outputs. We prove the existence of a mean-field equilibrium (MFE) for the wholesale energy market, and we develop a heuristic decentralized mean-field learning algorithm to converge to an MFE, taking into consideration the demand/supply shock and flexible demand. Our numerical experiments point to convergence to an MFE and show that our framework effectively reduces peak load and price fluctuations, especially during exogenous demand or supply shocks.</p>
114

Scaling of Steady States in a Simple Driven Three-State Lattice Gas

Thies, Michael 15 September 1998 (has links)
Phase segregated states in a simple three-state stochastic lattice gas are investigated. A two dimensional finite lattice with periodic boundary conditions is filled with one hole and two oppositely "charged" species of particles, subject to an excluded volume constraint. Starting from a completely disordered initial configuration, a sufficiently large external "electric" field <I>E</I> induces the phase segregation, by separating the charges into two strips and "trapping" the hole at an interface between them. Focusing on the steady state, the scaling properties of an appropriate order parameter, depending on drive and system size, are investigated by mean-field theory and Monte Carlo methods. Density profiles of the two interfaces in the ordered system are studied with the help of Monte Carlo simulations and are found to scale in the field-dependent variable, Ε = 2 tanh <I>E</I> /2), for <I>E</I> ≲ 0.8. For larger values of <I>E</I>, independent approximations of the interfacial profiles, obtained within the framework of mean-field theory, exhibit significant deviations from the Monte Carlo data. Interestingly, the deviations can be reduced significantly by a slight modification of the mean-field theory. / Master of Science
115

Anharmonicity and Electron-Phonon Interactions in Periodic Systems

Shih, Petra January 2024 (has links)
Anharmonic lattice dynamics and electron-phonon interactions are crucial to many intriguing physical phenomena in condensed matter physics. In my thesis, I develop theoretical methods and use them to characterize physical properties of model systems and realistic novel materials. First, I introduce vibrational dynamical mean-field theory on models of anharmonic phonons using various impurity solvers, and describe the theoretical extensions to treat non-local interactions. Second, I characterize phononic and excitonic ground state properties of the superatomic semiconductor, Re₆Se₈Cl₂, which exhibits quasi-ballistic exciton dynamics at room temperature. We attribute this behavior to the formation of polarons due to coupling with acoustic phonons and parameterize a Hamiltonian to study the ground state properties. Finally, I introduce a method to calculate the Green’s function that characterizes the equilibrium dynamical properties of polarons. I demonstrate its performance on the Holstein model at finite temperature, and show its applications to systems with general coupling, electron-electron interaction, and anharmonicity.
116

Lattice-gas cellular automata for the analysis of cancer invasion / Zelluläre Gitter-Gas Automaten Modelle für die Analyse von Tumorinvasion

Hatzikirou, Haralambos 16 July 2009 (has links) (PDF)
Cancer cells display characteristic traits acquired in a step-wise manner during carcinogenesis. Some of these traits are autonomous growth, induction of angiogenesis, invasion and metastasis. In this thesis, the focus is on one of the latest stages of tumor progression, tumor invasion. Tumor invasion emerges from the combined effect of tumor cell-cell and cell-microenvironment interactions, which can be studied with the help of mathematical analysis. Cellular automata (CA) can be viewed as simple models of self-organizing complex systems in which collective behavior can emerge out of an ensemble of many interacting &amp;quot;simple&amp;quot; components. In particular, we focus on an important class of CA, the so-called lattice-gas cellular automata (LGCA). In contrast to traditional CA, LGCA provide a straightforward and intuitive implementation of particle transport and interactions. Additionally, the structure of LGCA facilitates the mathematical analysis of their behavior. Here, the principal tools of mathematical analysis of LGCA are the mean-field approximation and the corresponding Lattice Boltzmann equation. The main objective of this thesis is to investigate important aspects of tumor invasion, under the microscope of mathematical modeling and analysis: Impact of the tumor environment: We introduce a LGCA as a microscopic model of tumor cell migration together with a mathematical description of different tumor environments. We study the impact of the various tumor environments (such as extracellular matrix) on tumor cell migration by estimating the tumor cell dispersion speed for a given environment. Effect of tumor cell proliferation and migration: We study the effect of tumor cell proliferation and migration on the tumor’s invasive behavior by developing a simplified LGCA model of tumor growth. In particular, we derive the corresponding macroscopic dynamics and we calculate the tumor’s invasion speed in terms of tumor cell proliferation and migration rates. Moreover, we calculate the width of the invasive zone, where the majority of mitotic activity is concentrated, and it is found to be proportional to the invasion speed. Mechanisms of tumor invasion emergence: We investigate the mechanisms for the emergence of tumor invasion in the course of cancer progression. We conclude that the response of a microscopic intracellular mechanism (migration/proliferation dichotomy) to oxygen shortage, i.e. hypoxia, maybe responsible for the transition from a benign (proliferative) to a malignant (invasive) tumor. Computing in vivo tumor invasion: Finally, we propose an evolutionary algorithm that estimates the parameters of a tumor growth LGCA model based on time-series of patient medical data (in particular Magnetic Resonance and Diffusion Tensor Imaging data). These parameters may allow to reproduce clinically relevant tumor growth scenarios for a specific patient, providing a prediction of the tumor growth at a later time stage. / Krebszellen zeigen charakteristische Merkmale, die sie in einem schrittweisen Vorgang während der Karzinogenese erworben haben. Einige dieser Merkmale sind autonomes Wachstum, die Induktion von Angiogenese, Invasion und Metastasis. Der Schwerpunkt dieser Arbeit liegt auf der Tumorinvasion, einer der letzten Phasen der Tumorprogression. Die Tumorinvasion ensteht aus der kombinierten Wirkung von den Wechselwirkungen Tumorzelle-Zelle und Zelle-Mikroumgebung, die mit die Hilfe von mathematischer Analyse untersucht werden können. Zelluläre Automaten (CA) können als einfache Modelle von selbst-organisierenden komplexen Systemen betrachtet werden, in denen kollektives Verhalten aus einer Kombination von vielen interagierenden &amp;quot;einfachen&amp;quot; Komponenten entstehen kann. Insbesondere konzentrieren wir uns auf eine wichtige CA-Klasse, die sogenannten Zelluläre Gitter-Gas Automaten (LGCA). Im Gegensatz zu traditionellen CA bieten LGCA eine einfache und intuitive Umsetzung der Teilchen und Wechselwirkungen. Zusätzlich erleichtert die Struktur der LGCA die mathematische Analyse ihres Verhaltens. Die wichtigsten Werkzeuge der mathematischen Analyse der LGCA sind hier die Mean-field Approximation und die entsprechende Lattice - Boltzmann - Gleichung. Das wichtigste Ziel dieser Arbeit ist es, wichtige Aspekte der Tumorinvasion unter dem Mikroskop der mathematischen Modellierung und Analyse zu erforschen: Auswirkungen der Tumorumgebung: Wir stellen einen LGCA als mikroskopisches Modell der Tumorzellen-Migration in Verbindung mit einer mathematischen Beschreibung der verschiedenen Tumorumgebungen vor. Wir untersuchen die Auswirkungen der verschiedenen Tumorumgebungen (z. B. extrazellulären Matrix) auf die Migration von Tumorzellen dürch Schätzung der Tumorzellen-Dispersionsgeschwindigkeit in einem gegebenen Umfeld. Wirkung von Tumor-Zellenproliferation und Migration: Wir untersuchen die Wirkung von Tumorzellenproliferation und Migration auf das invasive Verhalten der Tumorzellen durch die Entwicklung eines vereinfachten LGCA Tumorwachstumsmodells. Wir leiten die entsprechende makroskopische Dynamik und berechnen die Tumorinvasionsgeschwindigkeit im Hinblick auf die Tumorzellenproliferation- und Migrationswerte. Darüber hinaus berechnen wir die Breite der invasiven Zone, wo die Mehrheit der mitotischer Aktivität konzentriert ist, und es wird festgestellt, dass diese proportional zu den Invasionsgeschwindigkeit ist. Mechanismen der Tumorinvasion Entstehung: Wir untersuchen Mechanismen, die für die Entstehung von Tumorinvasion im Verlauf des Krebs zuständig sind. Wir kommen zu dem Schluss, dass die Reaktion eines mikroskopischen intrazellulären Mechanismus (Migration/Proliferation Dichotomie) zu Sauerstoffmangel, d.h. Hypoxie, möglicheweise für den Übergang von einem gutartigen (proliferative) zu einer bösartigen (invasive) Tumor verantwortlich ist. Berechnung der in-vivo Tumorinvasion: Schließlich schlagen wir einen evolutionären Algorithmus vor, der die Parameter eines LGCA Modells von Tumorwachstum auf der Grundlage von medizinischen Daten des Patienten für mehrere Zeitpunkte (insbesondere die Magnet-Resonanz-und Diffusion Tensor Imaging Daten) ermöglicht. Diese Parameter erlauben Szenarien für einen klinisch relevanten Tumorwachstum für einen bestimmten Patienten zu reproduzieren, die eine Vorhersage des Tumorwachstums zu einem späteren Zeitpunkt möglich machen.
117

Estudos do modelo de Hubbard desordenado em duas dimensões / Studies of the two-dimensional disordered Hubbard model

Suárez Villagrán, Martha Yolima, 1984- 23 August 2018 (has links)
Orientador: Eduardo Miranda / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin / Made available in DSpace on 2018-08-23T18:51:04Z (GMT). No. of bitstreams: 1 SuarezVillagran_MarthaYolima_D.pdf: 7321255 bytes, checksum: d76479a0e0c1143207cb4ee380a8034d (MD5) Previous issue date: 2013 / Resumo: Estudamos nesta tese alguns aspectos da transição metal-isolante de Mott no caso desordenado. O modelo no qual baseamos nosso estudo é o modelo de Hubbard desordenado, que é o modelo mais simples a apresentar a transição metal-isolante de Mott. Analisamos esse modelo através da Teoria Dinâmica de Campo Médio Estatística (StatDMFT). Essa teoria é uma extensão natural da Teoria Dinâmica de Campo Médio (DMFT), que foi usada com relativo sucesso nos últimos anos para analisar a transição de Mott no caso limpo. Como no caso dessa última, a StatDMFT incorpora os efeitos de correlação eletrônica apenas nos seus aspetos locais. A desordem é tratada de maneira a incorporar todos os efeitos de localização de Anderson. Com essa técnica, analisamos a transição de Mott desordenada no caso bi-dimensional, usando o Monte Carlo quântico para resolver os problemas de impureza única de Anderson requeridos pela StatDMFT. Encontramos as linhas espinodais nas quais o metal e o isolante deixam de ser meta-estáveis. Também estudamos os padrões espaciais das flutuações de quantidades locais, como a auto-energia e a função de Green local, e mostramos como há o aparecimento de regiões metálicas dentro do isolante e viceversa. Analisamos efeitos de tamanho finito e mostramos que, em consonância com os teoremas de Imry e Ma, a transição de primeira ordem desaparece no limite termodinâmico. Analisamos as propriedades de transporte desse sistema através de um mapeamento a um sistema de resistores aleatórios clássicos e calculamos a corrente média e sua distribuição através da transição metal-isolante. Finalmente, estudamos o comportamento da parede de domínio que se forma entre o isolante e o metal no caso limpo. Isso foi feito através de um modelo de uma cadeia unidimensional conectada a reservatórios, um metálico e um isolante, cada um em uma de suas extremidades. Nesse caso, utilizamos o método da Teoria de Perturbação Iterada para a solução dos modelos de impureza única. Encontramos o comportamento da parede como função da temperatura e das interações / Abstract: In this thesis, we studied some aspects of the Mott metal-insulator transition in the disordered case. The model on which we based our analysis is the disordered Hubbard model, which is the simplest model capable of capturing the Mott metal-insulator transition. We investigated this model through the Statistical Dynamical Mean-Field Theory (statDMFT). This theory is a natural extension of the Dynamical Mean-Field Theory (DMFT), which has been used with relative success in the last several years with the purpose of describing the Mott transition in the clean case. As is the case for the latter theory, the statDMFT incorporates the electronic correlation effects only incorporate Anderson localization effects.. With this technique, we analyzed the disordered two-dimensional Mott transition, using Quantum Monte Carlo to solve the associated single-impurity problems. We found the spinodal lines at which metal and insulator cease to be meta-stable. We also studied the spatial fluctuations of local quantities, such as the self-energy and the local Green¿s function, and showed the appearance of metallic regions within the insulator and vice-versa. We carried out an analysis of finite-size effects and showed that, in agreement with the theorems of Imry and Ma, the first-order transition is smeared in the thermodynamic limit. We analyzed transport properties by means of a mapping to a random classical resistor network and calculated both the average current and its distribution across the metalinsulator transition. Finally, we studied the behavior of the domain wall which forms between the metal and the insulator in the clean case. This was done by means of a model of a one-dimensional chain connected to two reservoirs, one metallic and the other insulating, each attached to one of the chain¿s ends. In this case, we used the Iterated Perturbation Theory technique in order to solve the associated singleimpurity problems. We then established the behavior of the domain wall width as a function of temperature and interactions / Doutorado / Física / Doutora em Ciências
118

Belief Propagation and Algorithms for Mean-Field Combinatorial Optimisations

Khandwawala, Mustafa January 2014 (has links) (PDF)
We study combinatorial optimization problems on graphs in the mean-field model, which assigns independent and identically distributed random weights to the edges of the graph. Specifically, we focus on two generalizations of minimum weight matching on graphs. The first problem of minimum cost edge cover finds application in a computational linguistics problem of semantic projection. The second problem of minimum cost many-to-one matching appears as an intermediate optimization step in the restriction scaffold problem applied to shotgun sequencing of DNA. For the minimum cost edge cover on a complete graph on n vertices, where the edge weights are independent exponentially distributed random variables, we show that the expectation of the minimum cost converges to a constant as n →∞ For the minimum cost many-to-one matching on an n x m complete bipartite graph, scaling m as [ n/α ] for some fixed α > 1, we find the limit of the expected minimum cost as a function of α. For both problems, we show that a belief propagation algorithm converges asymptotically to the optimal solution. The belief propagation algorithm yields a near optimal solution with lesser complexity than the known best algorithms designed for optimality in worst-case settings. Our proofs use the machinery of the objective method and local weak convergence, which are ideas developed by Aldous for proving the ζ(2) limit for the minimum cost bipartite matching. We use belief propagation as a constructive proof technique to supplement the objective method. Recursive distributional equations(RDEs) arise naturally in the objective method approach. In a class of RDEs that arise as extensions of the minimum weight matching and travelling salesman problems, we prove existence and uniqueness of a fixed point distribution, and characterize its domain of attraction.
119

Lattice-gas cellular automata for the analysis of cancer invasion

Hatzikirou, Haralambos 10 July 2009 (has links)
Cancer cells display characteristic traits acquired in a step-wise manner during carcinogenesis. Some of these traits are autonomous growth, induction of angiogenesis, invasion and metastasis. In this thesis, the focus is on one of the latest stages of tumor progression, tumor invasion. Tumor invasion emerges from the combined effect of tumor cell-cell and cell-microenvironment interactions, which can be studied with the help of mathematical analysis. Cellular automata (CA) can be viewed as simple models of self-organizing complex systems in which collective behavior can emerge out of an ensemble of many interacting &amp;quot;simple&amp;quot; components. In particular, we focus on an important class of CA, the so-called lattice-gas cellular automata (LGCA). In contrast to traditional CA, LGCA provide a straightforward and intuitive implementation of particle transport and interactions. Additionally, the structure of LGCA facilitates the mathematical analysis of their behavior. Here, the principal tools of mathematical analysis of LGCA are the mean-field approximation and the corresponding Lattice Boltzmann equation. The main objective of this thesis is to investigate important aspects of tumor invasion, under the microscope of mathematical modeling and analysis: Impact of the tumor environment: We introduce a LGCA as a microscopic model of tumor cell migration together with a mathematical description of different tumor environments. We study the impact of the various tumor environments (such as extracellular matrix) on tumor cell migration by estimating the tumor cell dispersion speed for a given environment. Effect of tumor cell proliferation and migration: We study the effect of tumor cell proliferation and migration on the tumor’s invasive behavior by developing a simplified LGCA model of tumor growth. In particular, we derive the corresponding macroscopic dynamics and we calculate the tumor’s invasion speed in terms of tumor cell proliferation and migration rates. Moreover, we calculate the width of the invasive zone, where the majority of mitotic activity is concentrated, and it is found to be proportional to the invasion speed. Mechanisms of tumor invasion emergence: We investigate the mechanisms for the emergence of tumor invasion in the course of cancer progression. We conclude that the response of a microscopic intracellular mechanism (migration/proliferation dichotomy) to oxygen shortage, i.e. hypoxia, maybe responsible for the transition from a benign (proliferative) to a malignant (invasive) tumor. Computing in vivo tumor invasion: Finally, we propose an evolutionary algorithm that estimates the parameters of a tumor growth LGCA model based on time-series of patient medical data (in particular Magnetic Resonance and Diffusion Tensor Imaging data). These parameters may allow to reproduce clinically relevant tumor growth scenarios for a specific patient, providing a prediction of the tumor growth at a later time stage. / Krebszellen zeigen charakteristische Merkmale, die sie in einem schrittweisen Vorgang während der Karzinogenese erworben haben. Einige dieser Merkmale sind autonomes Wachstum, die Induktion von Angiogenese, Invasion und Metastasis. Der Schwerpunkt dieser Arbeit liegt auf der Tumorinvasion, einer der letzten Phasen der Tumorprogression. Die Tumorinvasion ensteht aus der kombinierten Wirkung von den Wechselwirkungen Tumorzelle-Zelle und Zelle-Mikroumgebung, die mit die Hilfe von mathematischer Analyse untersucht werden können. Zelluläre Automaten (CA) können als einfache Modelle von selbst-organisierenden komplexen Systemen betrachtet werden, in denen kollektives Verhalten aus einer Kombination von vielen interagierenden &amp;quot;einfachen&amp;quot; Komponenten entstehen kann. Insbesondere konzentrieren wir uns auf eine wichtige CA-Klasse, die sogenannten Zelluläre Gitter-Gas Automaten (LGCA). Im Gegensatz zu traditionellen CA bieten LGCA eine einfache und intuitive Umsetzung der Teilchen und Wechselwirkungen. Zusätzlich erleichtert die Struktur der LGCA die mathematische Analyse ihres Verhaltens. Die wichtigsten Werkzeuge der mathematischen Analyse der LGCA sind hier die Mean-field Approximation und die entsprechende Lattice - Boltzmann - Gleichung. Das wichtigste Ziel dieser Arbeit ist es, wichtige Aspekte der Tumorinvasion unter dem Mikroskop der mathematischen Modellierung und Analyse zu erforschen: Auswirkungen der Tumorumgebung: Wir stellen einen LGCA als mikroskopisches Modell der Tumorzellen-Migration in Verbindung mit einer mathematischen Beschreibung der verschiedenen Tumorumgebungen vor. Wir untersuchen die Auswirkungen der verschiedenen Tumorumgebungen (z. B. extrazellulären Matrix) auf die Migration von Tumorzellen dürch Schätzung der Tumorzellen-Dispersionsgeschwindigkeit in einem gegebenen Umfeld. Wirkung von Tumor-Zellenproliferation und Migration: Wir untersuchen die Wirkung von Tumorzellenproliferation und Migration auf das invasive Verhalten der Tumorzellen durch die Entwicklung eines vereinfachten LGCA Tumorwachstumsmodells. Wir leiten die entsprechende makroskopische Dynamik und berechnen die Tumorinvasionsgeschwindigkeit im Hinblick auf die Tumorzellenproliferation- und Migrationswerte. Darüber hinaus berechnen wir die Breite der invasiven Zone, wo die Mehrheit der mitotischer Aktivität konzentriert ist, und es wird festgestellt, dass diese proportional zu den Invasionsgeschwindigkeit ist. Mechanismen der Tumorinvasion Entstehung: Wir untersuchen Mechanismen, die für die Entstehung von Tumorinvasion im Verlauf des Krebs zuständig sind. Wir kommen zu dem Schluss, dass die Reaktion eines mikroskopischen intrazellulären Mechanismus (Migration/Proliferation Dichotomie) zu Sauerstoffmangel, d.h. Hypoxie, möglicheweise für den Übergang von einem gutartigen (proliferative) zu einer bösartigen (invasive) Tumor verantwortlich ist. Berechnung der in-vivo Tumorinvasion: Schließlich schlagen wir einen evolutionären Algorithmus vor, der die Parameter eines LGCA Modells von Tumorwachstum auf der Grundlage von medizinischen Daten des Patienten für mehrere Zeitpunkte (insbesondere die Magnet-Resonanz-und Diffusion Tensor Imaging Daten) ermöglicht. Diese Parameter erlauben Szenarien für einen klinisch relevanten Tumorwachstum für einen bestimmten Patienten zu reproduzieren, die eine Vorhersage des Tumorwachstums zu einem späteren Zeitpunkt möglich machen.
120

Hippocampal ripple oscillations in inhibitory network models / Analyses at microscopic, mesoscopic, and mean-field scales

Schieferstein, Natalie 06 June 2023 (has links)
Die Aktivität des Hippocampus im Tiefschlaf ist geprägt durch sharp wave-ripple Komplexe (SPW-R): kurze (50–100 ms) Phasen mit erhöhter neuronaler Aktivität, moduliert durch eine schnelle “Ripple”-Oszillation (140–220 Hz). SPW-R werden mit Gedächtniskonsolidierung in Verbindung gebracht, aber ihr Ursprung ist unklar. Sowohl exzitatorische als auch inhibitorische Neuronpopulationen könnten die Oszillation generieren. Diese Arbeit analysiert Ripple-Oszillationen in inhibitorischen Netzwerkmodellen auf mikro-, meso- und makroskopischer Ebene und zeigt auf, wie die Ripple-Dynamik von exzitatorischem Input, inhibitorischer Kopplungsstärke und dem Rauschmodell abhängt. Zuerst wird ein stark getriebenes Interneuron-Netzwerk mit starker, verzögerter Kopplung analysiert. Es wird eine Theorie entwickelt, die die Drift-bedingte Feuerdynamik im Mean-field Grenzfall beschreibt. Die Ripple-Frequenz und die Dynamik der Membranpotentiale werden analytisch als Funktion des Inputs und der Netzwerkparameter angenähert. Die Theorie erklärt, warum die Ripple-Frequenz im Verlauf eines SPW-R-Ereignisses sinkt (intra-ripple frequency accommodation, IFA). Weiterhin zeigt eine numerische Analyse, dass ein alternatives Modell, basierend auf einem transienten Störungseffekt in einer schwach gekoppelten Interneuron-Population, unter biologisch plausiblen Annahmen keine IFA erzeugen kann. IFA kann somit zur Modellauswahl beitragen und deutet auf starke, verzögerte inhibitorische Kopplung als plausiblen Mechanismus hin. Schließlich wird die Anwendbarkeit eines kürzlich entwickelten mesoskopischen Ansatzes für die effiziente Simulation von Ripples in endlich großen Netzwerken geprüft. Dabei wird das Rauschen nicht im Input der Neurone beschrieben, sondern als stochastisches Feuern entsprechend einer Hazard-Rate. Es wird untersucht, wie die Wahl des Hazards die dynamische Suszeptibilität einzelner Neurone, und damit die Ripple-Dynamik in rekurrenten Interneuron-Netzwerken beeinflusst. / Hippocampal activity during sleep or rest is characterized by sharp wave-ripples (SPW-Rs): transient (50–100 ms) periods of elevated neuronal activity modulated by a fast oscillation — the ripple (140–220 Hz). SPW-Rs have been linked to memory consolidation, but their generation mechanism remains unclear. Multiple potential mechanisms have been proposed, relying on excitation and/or inhibition as the main pacemaker. This thesis analyzes ripple oscillations in inhibitory network models at micro-, meso-, and macroscopic scales and elucidates how the ripple dynamics depends on the excitatory drive, inhibitory coupling strength, and the noise model. First, an interneuron network under strong drive and strong coupling with delay is analyzed. A theory is developed that captures the drift-mediated spiking dynamics in the mean-field limit. The ripple frequency as well as the underlying dynamics of the membrane potential distribution are approximated analytically as a function of the external drive and network parameters. The theory explains why the ripple frequency decreases over the course of an event (intra-ripple frequency accommodation, IFA). Furthermore, numerical analysis shows that an alternative inhibitory ripple model, based on a transient ringing effect in a weakly coupled interneuron population, cannot account for IFA under biologically realistic assumptions. IFA can thus guide model selection and provides new support for strong, delayed inhibitory coupling as a mechanism for ripple generation. Finally, a recently proposed mesoscopic integration scheme is tested as a potential tool for the efficient numerical simulation of ripple dynamics in networks of finite size. This approach requires a switch of the noise model, from noisy input to stochastic output spiking mediated by a hazard function. It is demonstrated how the choice of a hazard function affects the linear response of single neurons and therefore the ripple dynamics in a recurrent interneuron network.

Page generated in 0.029 seconds